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A B S T R A C T   

Spatiotemporal density is important to understand the fluid behavior especially near the critical 
point (NCP). Here, molecular dynamics (MD) was applied to investigate Lennard-Jones (LJ) fluid 
NCP. Periodic boundary conditions are applied on the six surfaces of a simulation box (SB) 
consisting of 10976 LJ fluid atoms. A slice of 3.45σ is selected in the SB, where σ is the length 
scale of the LJ fluid. Our results show that the time dependent densities in the slice obviously 
deviate from the average value in SB. The deviations are found to display M-shape distribution 
with increases of average densities. The maximum deviation occurs at 0.8ρc instead of at ρc, 
where ρc is the density at the critical point. Attention is paid on the phase distribution in the SB. 
Three regimes of liquid-like, two-phase-like and gas-like are observed to evolve with time. The 
density variation is explained by the combined effect of potential induced mechanism and critical 
fluctuation mechanism. The time series of densities in the slice behave either chaotic or random 
characteristics. The sample entropy in chaotic system is smaller than that in random system. Our 
work is helpful to understand the density variation and phase distribution in simple LJ fluid 
system when crossing the critical point.   

1. Introduction 

Supercritical fluid (SF) has been widely used in a variety of industrial fields including chemical engineering, materials sciences, and 
power engineering [1–4]. For applications such as multiphase chemical reactors [1,5], thermochemical conversion of biomass [6,7], 
wastewater treatment [8], material synthesis [2], and power generation [3,4], the advantageous properties of SF enable improved 
performance of these systems. For example, the intermolecular distance in SF is larger than that of traditional fluids at room tem-
perature, allowing fast diffusion of solvent and low fluid viscosity which are beneficial for extraction and separation of useful product 
[9]. The large specific heat, high thermal conductivity, and low viscosity of SF are also favorable properties enabling their application 
in insulation of electronic equipment [10,11]. In textbooks, SF is regarded as a single-phase and homogeneous fluid and in the su-
percritical region, liquid and gas phases cannot be distinguished [12,13]. Recently, this concept is questioned by physicists. It was 
found that in SF, the distribution of molecules is not homogeneous, and fluctuations exist for the local density [14,15]. The properties 
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of SF is mainly resulted from the nonuniform distribution of molecules [16]. Therefore, in order to provide fundamental understanding 
of SF to improve and guide their applications in various industries, it is of great importance to study the microscale structure and 
dynamic behavior of SF. 

Experimental studies of SF are expensive due to high pressure/temperature environment encountered. Measurement of SF pa-
rameters such as densities in short length and time scale becomes challenging [17,18]. However, molecular dynamics (MD) simulation 
is cost-effective to investigate the fluid behavior in short length and time scale [19]. MD simulations have been widely used to study the 
thermodynamic and transport phenomena of SF. It has shown that MD could produce reliable and reasonable results when inter-
molecular interactions and boundary conditions of the simulated system are properly treated [20–25]. In nature, molecules are divided 
into single-atom molecule such as argon and Xenon, as well as multi-atoms molecule such as water. For the former, simple LJ potential 
describes the interactions between molecules, which significantly reduces the computation time. The calculated results are sufficiently 
accurate to compare with experiments. For the latter, not only van der Waals force induced by the LJ potential between molecules, but 
also other forces such as coulomb force, should be considered. Hence, the computation time is much longer than the single atom fluid. 
In this paper, simple LJ fluid is applied. 

The Mie potential energy is a simple expression to assess a number of properties [26] 

ϕ =
Ck

rk −
Cl

rl (1) 

where ϕ is the potential with k>l. The first term and second term represent repulsions and attractions, respectively. The most 
widely used intermolecular potentials is the Lennard-Jones (LJ) 12-6 potential [27] 

ϕ(r) = 4ε
([σ

r

]12
−
[σ

r

]6
)

(2)  

where ε is the depth of the attractive well, and σ is length scale for interactions between molecules, r is the distance between two 
neighboring molecules. The LJ type r− v–r− μ pair potentials were proposed in 1925 by Jones to describe the cohesive energy of crystals 
of noble gases, such as argon [28]. The current LJ 12-6 form was proposed by Lennard-Jones in 1931 after London had derived that the 
dispersion interaction between atoms decays as r− 6 [29]. Latter, it was shown that the LJ 12-6 potential is not a particularly good pair 
potential. After Wood and Parker and, subsequently, performed the first Monte Carlo (MC) simulations, and Rahman performed the 
first Molecular Dynamics (MD) simulations, these simulations showed good agreement between simulation results and experimental 
data [30,31]. The reason is due to a fortuitous cancellation of errors [32]. Then, the LJ 12-6 potential has been widely used in various 
fields including physics, mechanics, and chemistry [33–35]. Wang et al. [35] presented a review on the intermolecular potential for 
various applications. 

Density fluctuations are observed in nanoscale by Carlès [36]. Fluctuations are more serious near the critical point. Maddox et al. 
[37] simulated two-dimensional LJ fluid at densities below or near the critical point. They found that when approaching the critical 
point, the nonuniformity degree of densities increase, and the collective fluctuation and reconstruction time decrease. Based on the 
coordinate number of atoms, Martinez et al. [38] identified three regions of low, average and high densities in a two-dimensional LJ 
fluid system, and noted that the spatiotemporal densities of SFs fluctuate significantly. Yoshii et al. [39] performed MD simulations of 
LJ fluid xenon along the isothermal line of 1.07Tc with densities in the range of (0.125-2.78)ρc where Tc and ρc are the critical 
temperature and critical density, respectively. At ρc, atomic clusters are observed to form large voids between clusters. Idrissi et al. [40] 
studied the heterogeneous structure of argon with temperatures below, near, and above the critical point. The results show that at 
temperatures below the critical point, the density is non-uniform because of the fluctuation of boundary atoms. At temperature close to 
the critical point, the density distribution becomes more non-uniform. At temperature higher than the critical point, the density in-
homogeneity is weakened. Metatla et al. [41] studied the heterogeneous structure of supercritical water along different isothermal 
lines. Due to the combined effect of short-range force, indirect intermolecular force and hydrogen bonds, supercritical water can be 
seen as a mixture containing high-density fluid region and low-density region. The heterogeneity is more obvious as the average 
density decreases. When the average density is in the range of (0.6-0.8)ρc, the deviation of the local density from the average value 
reaches maximum [42]. 

It is noted that available studies on SF presented the atomic snapshot in static manner [39–41]. These studies describe the 
non-uniform distribution of SF, qualitatively. Different from the studies reported in the literature, this paper presents an investigation 
of spatial-temporal distribution of the LJ fluid near the critical point. The studied problem is important, due to many unusual phe-
nomena taking place when a fluid is crossing the critical point. For example, heat transfer either can be enhanced, or can be deteri-
orated when a fluid is crossing the critical fluid, compared with heat transfer when the fluid is far away from the critical point. Another 
application involves the wastewater treatment in supercritical pressure, under which the chemical reaction rate is enhanced when the 
fluid is crossing the critical point [43,44]. 

In this paper, we performed MD simulations for LJ fluid near the critical point. Because the fluid near the critical point demon-
strates two-phase-like characteristic, nonlinear analysis is introduced for the study. Average densities for the simulations are in the 
range of (0.5-1.4)ρc, along the critical isotherm T=Tc. The fluid density is averaged over a thin slice in the simulation box, but it is 
strongly time dependently. Probability density analysis and square root error are applied to analyze the time dependent density 
deviating from the average density. The deviations are found to display M-shape distribution with increasing average densities, and the 
maximum deviation appears at ρave=0.8ρc. In the whole simulation box, the fluid is observed to have three-regimes of liquid-like (LL), 
two-phase-like (TPL) and gas-like (GL). The phase distribution of the three regimes is presented versus time. The nonlinear analysis 
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shows that with continuous increase of the average densities, the fluid displays the characteristics of random and chaotic, respectively. 
The random characteristic is shown with the average densities either at 0.5ρc or at 1.4ρc. Chaotic fluid is observed when the fluid 
density is in the range of (0.6-1.3)ρc. 

2. Simulation method 

NIST is a widely used software to determine the physical properties for pure or mixture fluid. The software was developed by 
National Institute of Standards and Technology of USA. Each working fluid is based on a specific model cited from recognized 
reference. The argon model for the physical properties is based on Ref. [45], showing good accuracy when comparing with experi-
ments. At the critical point for argon, the temperature, pressure and density are Tc=150.687 K, Pc=4.863 MPa and ρc=0.5356 g/cm3 

respectively, decided by the NIST software. Alternatively, the MD simulations by Michels et al. [46] gave Tc=150.86 K, Pc=4.834 MPa 
and ρc=0.5354 g/cm3, respectively. It is seen that the NIST software determined values matched the MD simulation results well, with 
the maximum deviation between them less than 0.6%. In the present paper, the NIST software is used to determine the critical point of 
argon and arrange the running parameters of pressure, temperature and density for our studies. 

They are written in non-dimensional form as T∗
c = kBTc/ε = 1.2458, P∗

c = Pcσ3/ε = 0.11496 and ρ∗
c = ρcσ3/m = 0.31877, 

respectively, where kB is the Boltzmann constant, m is the mass of a molecule. Fig. 1a shows the P-T phase diagram in non-dimensional 
form. This figure is plotted based on the calculated data using the NIST software. The black curve represents the solid-liquid transition 
boundary (the melting line). The blue curve is the saturation line, on which a pressure corresponds to a saturation temperature in 
subcritical domain. The red curve is the Widom line in supercritical domain, determined by the maximum specific heat method. Fig. 1b 
helps to understand the determination process. At a supercritical pressure P*, there is a temperature T* at which the specific heat 
attains maximum. The Widom line is the collection of various data points of (T*, P*), see Fig. 1b. In this paper, all the MD simulations 
were performed at the critical temperature Tc. The pressures are varied in the range of (0.920-1.056)Pc, corresponding to the average 

Fig. 1. MD simulation NCP. (a) the phase diagram for argon including subcritical domain and supercritical domain; (b) the determination of P* and 
T* based on the maximum specific heat method, with an example point shown at P∗ = 0.13795; (c) the simulation box including a slice bin with a 
thickness of 3.45σ in SB; (d) the system temperatures and pressures versus time during early transition stage and steady stage for the fluid at the 
critical point. 
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densities in the range of (0.5-1.4)ρc, see the inset plot in Fig. 1a. Table 1 lists the running parameters performed in this paper. 
Fig. 1c shows the simulation box with the three-dimensional sizes of Lx=Ly=Lz. Periodic boundary conditions are applied at all six 

surfaces of the simulation box. The simulation box contains 10976 atoms of argon for all the running cases. Based on Ref. [39,47], the 
number of particles of 10976 is sufficiently large to capture useful information for SFs. Because the calculations are performed at the 
critical temperature Tc, but the varied pressure for different running case yields the varied box size in a range from 29.0853σ to 
40.9950σ , where σ  is 3.405 × 10− 10 m for argon. Simulations are conducted using LAMMPS [48], and Ovito software is used for 
atomic visualization. 

The modified LJ potential is applied to consider the long-range interactions, which is written as [21,49] 

ϕ
(
rij
)
=

{
4ε
[
(σ/r)12

− (σ/r)6
]
+ ϕTC (r < rc)

0 (r > rc)
(3)  

where ϕTC is the tail correction defined as ϕTC = 2πρ∗
∫∞

rc
r2g(r)ϕ(r)dr for the long-range interaction, where ρ∗ is the number density, g 

(r) is the pair distribution function, and rc is the cut-off radius, which is set as 5.8σ  [50]. Table 2 lists the parameters of m, ε and σ for 
argon. 

After energy minimization, the Velocity-Verlet algorithm is used to integrate the momentum equation. The timestep is set as 
0.001τ, where τ is the characteristic time (τ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
mσ2/ε

√
= 2.16× 10− 12 s). NVT and NPT ensembles are applied [51,52]. For the 

former, the volume of SB, the number of atoms and the temperature are kept to be constant. For the latter, the number of atoms, the 
pressure and the temperature are controlled. It is reported that for NPT ensemble, the volume of the SB may fluctuate, influencing the 
calculation accuracy of the local density [52]. Therefore, NVT ensemble is used instead of NPT ensemble. During calculation, fluid 
atoms are coupled with a thermostat of Nosé-Hoover [53,54], keeping the system temperature at T=Tc. The pressure is not a control 
parameter, but is determined by the temperature and density. 

Fluid atoms are arranged as a face centered cubic (fcc) structure in the initial stage. For each running condition, a relaxation period 
exists before the system achieves equilibrium. Fig. 1d shows the variations of non-dimensional temperatures, pressures and energies 
versus time at the critical point after equilibrium, in which Pe is the potential energy. All the three curves reach equilibrium before 
1000τ. During molecular dynamics simulations, the velocities need to be continuously corrected. Using temperature as an example, it 
is necessary to correct the velocity if the calculated temperature of system is too high or too low compared to the set temperature. The 
atomic velocity no longer requires correction when the temperature satisfies 0.9≤TMD/Tset≤1.1, where TMD is the molecular dynamics 
results and Tset is the setting value. It is seen that the simulation and set values are in good agreement, and the temperature is well 
controlled to be at the set value. The size of the simulated box, the selection of the truncation radius and the statistical errors all 
contribute to the fluctuation of the statistical parameters [55]. Thus, noisy features are still present in the equilibrium stage beyond 
1000τ. For all the running cases, the simulation time after equilibrium is  40000 τ, which is sufficiently long for data analysis. For 
general consideration, the following non-dimensional parameters are applied including x∗ = x

σ , y∗ =
y
σ, z

∗ = z
σ, t

∗ = t
τ, T

∗ = T kB
ε , ρ∗ =

ρσ3

m , P∗ = Pσ3

ε . 

3. Results and discussion 

3.1. Density fluctuation and phase distribution 

The investigation of critical phenomena of real fluid is more complex. Abnormal behavior of fluids approaching the critical point 
can be observed, appearing in the form of large-scale density fluctuations. Density fluctuation characteristics vary both in time and 
space. Some information will be lost when analyzing values that are averaged over a large space or over a long time. In order to obtain 
the spatiotemporal evolution characteristics of density fluctuations and conduct non-linear analysis on the density, we select the slice 
layer and the whole simulation system for density statistics, and analyze the evolution of density with time and space. The method of 
selecting the slice to observe the fluid structure has been applied in Ref. [39,56]. In many studies [39,50,57,58], large-scale and 
long-time (1~20 ns) MD simulations were performed for supercritical fluid to reproduce fluid thermophysical properties, structure, 

Table 1 
Summary of the simulation parameters.  

Case Temperature (kBT/ε) Non-dimensional density (ρ∗ = ρσ3/ε) Pressure (P∗ = Pσ3/ε) 

1 T∗
c = kBTc/ε = 1.2458 0.5ρ∗c=0.15939 0.10572 

2 0.6 ρ∗c=0.19126 0.11083 
3 0.7 ρ∗c=0.22314 0.11360 
4 0.8 ρ∗c=0.25502 0.11468 
5 0.9 ρ∗c=0.28689 0.11494 
6 1.0 ρ∗c=0.31877 0.11496 
7 1.1 ρ∗c=0.35065 0.11497 
8 1.2 ρ∗c=0.38252 0.11526 
9 1.3 ρ∗c=0.41440 0.11677 
10 1.4 ρ∗c=0.44627 0.12139  
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and density fluctuation. In this paper, we select  40000τ (~80 ns) production run to analyze the properties of fluid density fluctuation. 
The simulation time is several times longer than existing literature, ensuring the nonlinear analysis has enough data samples. 

In order to perform transient and nonlinear analysis of local fluid density time series curves of different simulation conditions, in 
this paper, we choose the slice with a thickness of 3.45σ in the z direction, which is parallel to the xy plane, and obtain the statistical 
density in such a slice at each time, called local density. The nondimensional local density is 

ρσ3 =
σ3

AΔz(JE − JS + 1)
∑JE

JS

Nlo (4)  

where JS is the start time step and JE is the end time step of the statistics, A is the xy plane area (A=LxLy), Δz = 10σ, Nlo is the total 
number of fluid molecules in the slice. Nlo changes over time, and the fluid local density of the slice varies with time, indicating the 
mass exchange between the slice and the nearby fluid domains. According to Eq.(4), the time series curves X(t) of the local density in 
the slice are obtained. 

Fig. 2 shows fluid densities in the slice bin with a 3.45σ thickness versus time, including five subfigures at different running 
conditions characterized by average density and pressure for each. These densities are oscillating with different amplitudes. Large 
amplitude oscillations are observed with the average densities of 0.8ρc, 1.0ρc, and 1.2ρc. Attention is paid on the case with ρave=0.8ρc, 
densities in the slice bin are larger than ρave in the initial 20000 τ time period, indicating the collection process of atoms in the slice bin. 
Then, the densities gradually evolve to fluctuate around ρave, indicating the breaking process of the atomic aggregation. For the cases of 
0.5ρc and 1.4ρc, oscillations of densities in the slice bin with small amplitudes and high frequencies are observed, display random 
feature of the oscillations. In one word, oscillations of local densities are different at different average densities and pressures. 

Fig. 3 shows how densities in the slice bin deviate from the average densities at the critical temperature. Fig. 3a shows the 
probability density of local density time series (see Fig. 2). The vertical coordinate and horizontal coordinate refer to the probability 
density and the deviation degree of the local density with respect to the average density, respectively. The cases of 1.4ρc and 0.5ρc have 
the first and second largest probability for the local density being equal to the average density. These two cases also have the uniform 
distribution of the probability density curves against the zero deviation of the local density with respect to the average density. 
However, it is interesting to note the non-uniform distribution of the probability density curves for the cases of 0.8 ρc, 1.0 ρc and 1.2ρc. 
Fig. 3b further characteries the deviations of the local densities (ρlocal) in the slice bin from the average density (ρave) in the whole 
simulation box. The root mean square error es characterizes the deviations of the local densities (ρlocal) in the slice from the average 
density (ρave) in the whole simulation box. For local density time series of different working conditions (see Fig. 2), the relative error of 
each point is 

ei =
ρlocal − ρave

ρave
(5) 

The root mean square error es is expressed as 

eS =

̅̅̅̅̅̅̅̅̅̅
∑N

i=1
e2

i

N

√
√
√
√
√

× 100% (6)  

where N is the number of data points over series of time periods. In this paper, 40000τ data samples after the system equilibrium were 
chosen for deviation analysis. The deviation curve displays M-shape distribution, having lowest deviations at either lower average 
density of 0.5ρc or at the larger average density of 1.4ρc. The M-shape curve have two peak points. It is interesting to observe the largest 
deviation taking place at 0.8ρc, not at the exactly critical point of 1.0ρc. Maddox et al. [59] explained that due to the non-ideality of LJ 
fluids, there is a short range potential effect, which will promote the system to form small physical clusters and cause density in-
homogeneity, which is more significant at low density. One the other hand, the inhomogeneities are generated by critical fluctuations, 
which tend to be maximized at critical density. The competition between these two mechanisms causes the location of the maximum 
density fluctuations to occur below the critical density. 

Pseudo-boiling was applied to explain the heat transfer of SF. Banuti developed the PB temperature for crossing the Widom line 
based on thermodynamic approach [60]. Xu et al. [61] determined two transition temperatures using MD simulations. Fig. 4 shows 
that SF can be divided into LL, TPL and GL, in which Ts is the transition temperature from LL to TPL, Te is the transition temperature 
from TPL to GL. At the critical pressure (Pr=P/Pc=1), the density curve has two crossing points, marked as a and b, with the two 
transition boundaries of ρσ3|Ts 

and ρσ3|Te
, determining GL, TPL and LL in the ranges of ρσ3<0.154, 0.154<ρσ3<0.495, and ρσ3>0.495, 

respectively. 
We note that Fig. 2 shows the time dependent densities in the slice bin (a local region), but Fig. 5 presents the non-dimensional 

densities over the xy plane but summarizes the whole height information of the simulation box. The presentation was performed at 

Table 2 
. Parameters occurring in LJ potential.  

working substance atom mass m (kg) energy parameter ε (J/K) size parameter σ (m) 

LJ fluid 6.63 × 10− 26 1.67 × 10− 21 3.405 × 10− 10  
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Fig. 2. Non-dimensional densities in the slice bin versus time at different running cases.  
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Fig. 3. Deviation of the density in the slice bin from the average density in the simulation box. (a) the probability density with respect to the density 
deviation, (b) the square root error (deviation) influenced by average densities. 
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the critical pressure and temperature, for which red spot and blue spot represent densely populated particles and sparsely populated 
particles, respectively. Hence, the former indicates the liquid-like behavior but the latter represents the gas-like behavior. Fig. 5 shows 
the density distribution of the simulated box on the xy plane at the critical operating condition, showing 6 states in the time range of 
16350τ-17200τ. The non-uniform distribution of density confirms the heterogeneous characteristic of supercritical argon. It can be 
seen that the size, position and shape of the three regimes all vary over time and space. Both LL and GL regions have experienced an 
evolution process containing formation, destruction, and reconstruction. Such phase distribution on the xy plane also varied over time, 
and different phase distribution states are obtained when the statistical time is changed. In summary, Fig. 2 indicates the time 
dependent behavior of the local densities, and Fig. 5 indicates the time dependent phase distribution over the whole simulation box. 

The study of heterogeneous fluids requires techniques that typically identify and classify fluid properties based on the number of 
neighbors near a molecule [62,63]. In the simulation box, each molecule can be selected as a target molecule. For a sphere having 1.5σ 
radius with this target molecule, the number of molecules is counted excluding the target molecule, which is called the number of 
neighboring molecules. The probability curves were plotted for different average densities of the system, displaying parabola distri-
bution with a peak point for each curve. We recall that if a target molecule has more than four neighboring molecules, the target 
molecule is named as a liquid-like molecule. Alternatively, the target molecule is called a gas-like molecule [64–66]. This method has 
good applicability for analyzing the inhomogeneity of SF and has been recommended by Xu and Wang [61] and Losey and Sadus [65], 
and it is also used here. Fig. 6 characterizes the non-uniform distribution of the molecules in the simulation box, plotted based on the 
neighboring molecules method. In this paper, 40000τ data samples after the system reaching equilibrium were chosen for hetero-
geneity analysis. The probability curves were plotted for different average densities of the system, displaying parabola distribution 
with a peak point for each curve. We recall that if a target molecule has more than four neighboring molecules, the target molecule is 
named as a liquid-like molecule. Alternatively, the target molecule is called a gas-like molecule [64,65]. The probability curve has a 
wide range of the number of neighboring molecules, indicating that the system contains the mixture of liquid-like molecules and 
gas-like molecules. It is observed that with increase of the average density, the peak point shifts toward right with larger number of 
neighboring molecules. We further count the number of clusters in the system. 

The structural mechanism explains the inhomogeneous distribution of molecules [59], which is also called the potential induced 
mechanism [37]. Fig. 7a-b plots non-dimensional potential (ϕ/ε) and non-dimensional force (Fσ/ε) versus the distance between two 
molecules (r). Repulsive forces exist for r<1.12σ, beyond which attractive forces exist. In order to qualitatively analyze the impact of 
potential energy on density fluctuations, the average distance between molecules under each density is obtained by assuming a 
uniform distribution of molecules within the simulation box. The average distance determines the strength of interatomic interactions 
in the simulation box and thus determines density fluctuations. In this paper, the representative working conditions of high, medium 
and low densities are chosen for qualitatively analysis. Three points are marked as a, b and c in Fig. 7b, representing dense population, 
moderate population, and sparse population of molecules. For dense population with small r, attractive force is large to confine many 
particles at their equilibrium positions, approaching uniform distribution of molecules. This situation displays liquid-like behavior. In 
another extreme of sparse distribution with large r, attractive force is very small and approaches zero, and molecules can move freely 

Fig. 4. The transition boundaries among the three regimes of GL, TPL and LL. The data are recalculated based on the method reported in [61] and 
the figure is replotted based on [61]. 
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Fig. 5. Phase distribution on the xy plane summarizing the information in the whole height of the simulation box at the critical point of Pc and Tc.  
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and have strong homogeneity. This situation corresponds to gas-like behavior. However, if r is moderate, the force varies gently with r. 
Some molecules decrease their distance to form clusters of molecules, but some molecules increase their distance to form voids in the 
fluid. The density fluctuation and phase distribution corresponding to the three points are shown in Fig. 7c. This mechanism quali-
tatively explains the phenomenon of strong density fluctuations near the critical point, presenting a mixture of liquid-like and gas-like. 

The critical fluctuation can also explain the heterogeneous characteristic of molecules. Based on statistical mechanics, there are 
molecular aggregation and vacancy in molecules system. Density fluctuations produce microscopic inhomogeneity. Fluctuations at one 
spatial location are related to those at other spatial location [67]. Correlation length characterizes the correlated region size [68] 

ξ(P)∝|P − Pc|
− γ (7)  

where the exponent γ  is 0.8-0.9 in a three-dimensional system [68]. For the pressure approaching the critical pressure at the critical 
temperature Tc, the correlation length ξ(P)attains maximum (see Fig. 8). Practically, ξ(P) reaches infinite at the critical point [37]. 
When the fluid deviates from the critical point, the correlation length rapidly decreases, but it is still much greater than the inter-
molecular interaction distance. Thus, the critical fluctuation belongs to long-range effect. The isothermal compression coefficient κT is 
directly related to the density fluctuation. The density fluctuation can be calculated based on isothermal compression coefficient κT as 
[68] 

〈
(ΔN)

2〉

〈N〉
= ρaveκTkBT (8) 

Nichele et al [69] used MD simulation to calculate κT of LJ fluid near the critical point, agreeing with the NIST data. The maximum 
deviation between MD simulations and NIST data is smaller than 15%. Hence, we use κT calculated by the NIST software to perform the 
analysis since κT is an easily obtainable parameter. Fig. 8 plots κT versus non-dimensional average densities. Because density fluctu-
ation is proportional to κT (see Eq.8), at the critical point, κT reaches the maximum value, corresponding to the largest density fluc-
tuation amplitude. 

In summary, the heterogeneous structure of SF can be attributed to the potential induced mechanism and the critical fluctuation 
mechanism. The potential induced mechanism is effective over the full phase diagram, while the critical fluctuation mechanism is only 
effective near critical point. At low average density away from the critical density, the potential induced effect dominates. As the 
density increases and approaches the critical density, the effect from the critical fluctuation mechanism gradually becomes significant, 
and both mechanisms play important roles. Under the combined action of the two mechanisms, the strongest heterogeneity appears 
not at the critical point, but below the critical point at ρave=0.8ρc, which is consistent with Ref. [70]. 

Fig. 6. Characterization of the non-uniformity distribution of molecules in the simulation box, the probability distribution of neighboring particles 
per target particle. 
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3.2. Nonlinear analysis 

3.2.1. Why do we need nonlinear analysis for SF? 
Classically, supercritical fluid (SF) is regarded as single-phase fluid without bubbles and related interface [13]. In SF, a thermo-

dynamic parameter such as density is solely determined based on the state parameters of pressure and temperature. However, we 
demonstrate oscillations of local densities in the slice bin, and two-phase-like feature of SF. To further identify the two-phase-like 
feature of SF and how the complicated SF system evolves versus time, the chaotic analysis is introduced. The chaotic analysis is not 
necessary for single-phase system due to weak nonlinear effect. The system is completely predictable. However, multiphase system is a 
strong nonlinear system, due to the complicated interactions of mass, momentum, and energy between liquid and gas. In a multiphase 
system, it seems that many parameters such as densities and pressures oscillate irregularly, the purpose of nonlinear analysis is 
summarized as: (1) identify a system being chaotic or random. A chaotic system is partially predictable, but a random system is 

Fig. 7. Uniformity degree of molecules explained by the potential induced mechanism. (a) non-dimensional potential versus r; (b) non-dimensional 
forces versus r; (c) density fluctuations and phase distribution corresponding to three different conditions. 
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completely non-predictable. (2) establish the phase space to see the internal structural of the attractor. The attractor is completely 
irregular for random system, has regular structure for chaotic system. (3) understand how complex a nonlinear system is. The cor-
relation dimension determines the minimum number of parameters that is necessary to describe the system. The larger the number is, 
the more complex the system is. 

3.2.2. Approaches of the nonlinear analysis 
In this paper, we use the nonlinear analysis. The input data come from the time series signal. Here, the time series densities in the 

slice bin are the input data (see Fig. 2). The autocorrelation function, reconstruction of phase space and correlation dimensions are 
calculated. 

3.2.2.1. Autocorrelation function (ACF). Earlier in this paper, we obtained the time series X(t) of local density in the slice. ACF rep-
resents the relationship of a parameter such as local density ρσ 3 at different time steps, i.e., the degree of correlation between different 
instantaneous values. ACF is 

ACF(τD) =

∫N− τD

t=1

[X(t)][X(t + τD)]dt

∫N

t=1

[X(t)]2dt

(9)  

where τD is the delay time, N is the total number of data. For periodic time series, ACF displays periodic feature. For random signal, ACF 
quickly decays to zero as soon as time increases, representing the parameters not related at different time steps. For chaotic system, 
ACF gradually approaches zero, representing partially related of parameters at different time steps. 

3.2.2.2. Reconstruction of phase space. The phase diagram is the trajectory displayed by the attractor in the phase space, showing the 
geometric structure of the attractor. For the univariate time series obtained by the simulation, multidimensional attractors can be 
obtained by reconstructing the phase space. At present, the delayed coordinate phase space reconstruction method is widely used, and 
the delay time τD can be obtained according to the ACF. The multidimensional phase space portraits can be reconstructed from the time 

Fig. 8. Correlation length and isothermal compressibility coefficient versus average densities at the critical temperature Tc.  
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series of density fluctuations [71], the same method described in Ref. [42]. From the MD simulations, the time series density signal X(t) 
is obtained. The vector time series Xv is defined as [52] 

Xv = {X(t), X(t+ τD), X(t+ 2τD), . . . X(t+(n − 1)τD} (10)  

where n is the embedding dimension and τD is the time delay, which is determined based on ACF. 

3.2.2.3. Correlation dimension. The correlation dimension reflects the degree of freedom of the system, and indicates the minimum 
number of independent variables to determine the system dynamics, which is an important parameter for chaotic quantitative analysis. 
The correlation dimension D2 can be determined by the power-law relationship between correlation integration of attractors and the 
neighborhood radius of the analysis hypersphere [61,72] as 

D2 = lim
r→0

lnC(rd)

lnrd
(11) 

Fig. 9. Autocorrelation function based on time series of densities in the slice bin. (a) 0.5ρc, 0.8ρc and 1.0ρc; (b) 1.1ρc, 1.2ρc and 1.4ρc.  
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Fig. 10. Structure of phase space (attractor). (a) and (f) are for random system, (b-e) are for chaotic system.  
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Fig. 11. The degree of complex of LJ fluid. (a) correlation dimensions at various average densities, (b) sample entropies at various average densities.  

Y. Wang et al.                                                                                                                                                                                                          



Chinese Journal of Physics 84 (2023) 132–151

147

Fig. 12. Size effect on system performance. (a) the size effect on the deviations of local density from average density; (b) the size effect on the 
probability of neighboring molecules for target molecule. 
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where C(rd) is the correlation integral defined by C(rd) = 2
Nd(Nd − 1)

∑Nd
j=1

∑Nd
i=j+1θ(rd −

⃒
⃒
⃒
⃒ x→i − x→j

⃒
⃒
⃒
⃒), in which xi is the points on the 

attractor and Nd is the number of embedding points in phase space. θ(•) is the Heaviside step function, which is defined as 

θ(x) =
{ 0, x ≤ 0

1, x > 0
(12)  

3.2.3. Outcomes of the nonlinear analysis of SF 
It is assumed that there is a linear relationship between time series data points, and the autocorrelation function (ACF) expresses the 

degree of linear correlation between different steps in local density time series. The ACF of periodic signals is also periodic, the ACF of 
chaotic signals gradually tends to zero, and the ACF of random signals is close to zero as soon as time increases. Fig. 9 presents ACF with 
ρave from 0.5ρc to 1.4ρc. At the two extreme average densities of 0.5ρc and 1.4ρc, ACF sharply drops to zero, indicating the system to be 
random and not predictable. With ρave=0.8ρc, 1.0ρc, 1.1ρc and 1.2ρc, ACF slowly decreases, reaches zero at a relaxation time τD, and 
then oscillates, indicating the system to be chaotic. The τD will be used for the construction of phase space (attractor) and correlation 
dimension. 

Attractor reconstruction was carried out using the method described in Section 3.2.2. Two types of attractor patterns were iden-
tified for the different simulation conditions of this work, as shown in Fig. 10. Conditions with ρave=0.5ρc and 1.4ρc show the type-I 
attractor, having numerous irregular lines in the phase space, which makes it difficult to observe the internal structure of the attractor, 
and the attractor converges toward the center (see Fig. 10a and f). The disorder and irregularity of the attractor structure indicate 
random behavior. On the other hand, the type-II attractor is shown in Fig. 10b~e (with ρave=0.8ρc, 1.0ρc, 1.1ρc and 1.2ρc). The 
attractor pattern is densely populated in some local phase spaces but is very sparse in other regions. The attractor pattern is composed 
of superimposed multiphase loops and has a fine internal structure, corresponding to chaotic behavior of the time series density signal. 
This feature is very similar to the two-phase system in subcritical pressure. 

Correlation dimension (D2) and embedding dimension (n) represent minimum number and maximum number of independent 
parameters to describe the system. Thus, the two parameters characterize the complex degree of the system. The D2 and n are plotted 
versus average densities in Fig. 11a. We note that the two parameters are not presented for 0.5ρc and 1.4ρc. For random system, with 
increase of embedding dimensions, correlation dimensions do not have a saturation value and diverge (see the inset-figure in Fig. 11a). 
Fig. 11a indicates that the system is more complex with 0.6ρc than those with other average densities. The most complex condition 
does not take place at the exactly critical point. 

In 1991, Pincus applied the notion of “entropy” to the real world [73]. Entropy means the order or complexity or regularity. The 
idea is that time series from more ordered systems with repeating elements have smaller entropy values. If the data set is infinite and 
perfect, it would be possible to determine an exact entropy value. For data set that is finite or imperfect, Pincus introduced the 
approximate entropy [73], which is simple but has practical issues in implementing the algorithm. These motivated Richman et al. 
[74] to develop new sample entropy as an alternative method to entropy estimation for real word data [74]. The calculation method of 
sample entropy is as follows: 

(1) The signal X is a time series of length Nr, X=[x(1), X(2), …, X(Nr)]. Convert time series X to matrix Xn, Xn(i)=[x(i), X(i+1), …, X 
(i+n-1)], i=1,2,…,Nr-n+1, n is the embedding dimension. 
(2) Define the distance dij between two vectors asdij = max(|x(i + k) − x(j + k)|, k = 0, 1, ..., n − 1, i ∕= j)
(3) Calculate the ratio Bn

i (re) = num(dij < re)/(Nr − n), where 1≤j≤Nr-n; j∕=i, and Bn(re) = 1
Nr − n+1

∑Nr − n+1
i=1 Bn

i (re). 
(4) Let n=n+1, repeat the above steps, and obtain Bn+1(re). The sample entropy SE(n, re) can be finally obtained as SE(n, re) = −

ln[Bn+1(re) /Bn(re)]. 

During the calculation, n=2. The value range of re is (0.1~0.25)Std, where Std is the standard deviation of time series. This method 
is recommended by Zurek et al. [75] and Pham et al. [76], and is also used here. From the above method, we identify that the system is 
either random or chaotic. The random system has a strong degree of chaos, showing a large sample entropy. For a chaotic system, the 
system has a low degree of chaos, the local ordered structure exits, and the sample entropy is small. Fig. 11b presents the sample 
entropies at different average densities. The sample entropies are much higher for ρave<0.6ρc and ρave>1.3ρc, indicating more 
disordered characteristic of the system under such conditions. The non-linear dynamics proves that SF in random state displays more 
disordered degree than that in chaotic state. 

Previous MD simulations show snapshoot pictures to demonstrate inhomogeneous molecules for SF [39–41]. In this paper, we 
found that with the average densities in the range from 0.5ρc to 1.4ρc at the critical temperature, local densities in the slice bin oscillate 
versus time irregularly. Most importantly, the phase distribution contains the mixture of liquid islands and vapor voids. Inspired by the 
two-phase-like characteristic of SF, nonlinear analysis is introduced for the analysis of the complicated system. Our results indicated 
that SF is either random or chaotic, depending on the average densities. The chaotic SF is partially predictable, but the random SF is not 
predictable. The degree of complex for SF is characterized by the autocorrelation function and the correlation dimension. Random SF 
has irregular pattern of attractors, but internal structure can be observed for chaotic SF. Random SF displays more disordered feature 
than chaotic SF. 
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We note that the above outcomes come from the simulations using 10976 molecules in the simulation box, which is sufficiently 
large to acquire useful information. The size effect on system performance is performed with the number of molecules in the simulation 
box varied from ~2,000 to ~12,000. For any size in this range, the system behavior is similar, qualitatively. The spatial-temporal 
molecules display liquid-like, two-phase-like, or gas-like, depending on average densities. SF is either random for liquid-like and 
gas-like, or chaotic for two-phase-like. Fig. 12 quantifies effect of the number of molecules in the simulation box on system perfor-
mance. The deviation of local density in the slice bin from the average density, characterized by square root error (es), increases with 
increase of the simulated particle number. The curve slope decreases for larger particles system, i.e., the increase speed of es decreases 
with increase of particles number (see Fig. 12a). The probability versus the number of neighboring molecules for target molecule is 
plotted in Fig. 12b, displaying parabola shape. The peak value takes place at the four neighboring molecules for target molecule. The 
probability at the peak point is larger for smaller molecules system, and decreases for larger particles system. The decrease speed of the 
peak probability decreases with increase of the number of simulation particles. Fig. 12 concludes the sensitivity of the simulation box 
size becomes weak when the molecules number is larger than 104. 

4. Conclusions 

MD simulations of supercritical fluid are performed at the critical temperature but with varied average densities in a range of 0.5ρc 
~1.4ρc. Conclusions are summarized as follows.  

(1) High-frequency/low-amplitude density oscillations in the slice bin exist at 0.5ρc and 1.4ρc, but low-frequency/high amplitude 
oscillations exist with ρave from 0.6ρc to 1.3ρc. The maximum deviation of local densities from average density occurs at 0.8ρc 
instead of ρc at the exactly critical point.  

(2) Transition boundaries among three regimes of liquid-like, two-phase-like and gas-like are determined. Two-phase-like is 
observed to contain liquid islands and vapor voids. Phase distribution evolves versus time. Local density oscillation and phase 
distribution are explained by potential induced and critical fluctuation mechanisms.  

(3) Nonlinear analysis is introduced to analyze the complicated SF, which is either random or chaotic, depending on average 
densities. The chaotic SF is partially predictable, but the random SF is not predictable. The degree of complex for SF is char-
acterized by autocorrelation function and correlation dimension. Random SF has irregular attractors, but internal structure of 
attractors can be seen for chaotic SF.  

(4) SF displays similar behavior with the number of molecules varied from ~2,000 to ~12,000. The deviation of local density from 
average density increases with increase of the box size, but the slope becomes decreased for larger particles system. The 
probability peak takes place for four neighboring molecules for target molecule, but the peak amplitude decreases for larger 
particles system. The ~104 particles in the simulation box is sufficient to acquire useful information. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China (No. 52130608, 52106198). 

References 

[1] B. Subramaniam, R.V Chaudhari, A.S. Chaudhari, G.R. Akien, Z. Xie, Supercritical fluids and gas-expanded liquids as tunable media for multiphase catalytic 
reactions, Chem. Eng. Sci. 115 (2014) 3–18. 

[2] K.P. Johnston, P.S. Shah, Making nanoscale materials with supercritical fluids, Science 303 (2004) 482–483. 
[3] J. Xu, E. Sun, M. Li, H. Liu, B. Zhu, Key issues and solution strategies for supercritical carbon dioxide coal fired power plant, Energy 157 (2018) 227–246. 
[4] W.H. Stein, R. Buck, Advanced power cycles for concentrated solar power, Sol. Energy 152 (2017) 91–105. 
[5] L. Guo, H. Jin, Y. Lu, Supercritical water gasification research and development in China, J. Supercrit. Fluid. 96 (2015) 144–150. 
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