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ABSTRACT: To increase the boiling heat transfer limit, we disrupted the previously
nonevaporating region and increased the vaporization activity of “inert” liquid molecules by
introducing nano ridges on the boiling surface. This solved the paradox of no heat transfer
occurring through the thinnest liquid film in boiling bubbles; thus, the internal heat transfer
limit of the bubbles was exceeded. We found that vigorous boiling occurred immediately once
the nonevaporating region was activated, and the bubble frequency increased by an order of
magnitude, reaching 1186 Hz, which has not been previously reported. With an increase in
heat flux, the boiling curve exhibited a “return”. We achieved an extremely high bubble
frequency by experimentally quantifying the major influence of nonevaporating region
disruption on boiling heat transfer. The mechanism behind the generation of the ultrahigh-
frequency bubbles was discovered. This study also reveals a new mechanism for the reversed boiling curve.
KEYWORDS: nanostructure ridges, bubble frequency, inertia growth, nonevaporating film, boiling curve

Since the proposal of pool boiling heat transfer, it has beenwidely applied in various engineering applications such as
nuclear reactors, heat exchangers, aerospace electronic equip-
ment, electronic devices, and other high heat flux devices.1−8

Several factors can improve pool boiling effectiveness, such as
increased surface area,9 nucleation site density,10 wettability,11

reduced instability wavelength,12 and capillary core suction or
spreading.13 These factors for improving pool boiling are
primarily related to macroscopic or microscopic aspects, and
further research on nanoscale fundamental problems regarding
heat transfer inside a boiling bubble is required. The three-
phase contact line occurring at the bottom of a bubble
represents the interface between the liquid−vapor and solid
surface. The contact line region dynamics determine the
growth and departure of bubbles, providing valuable insights
into the phenomenon of boiling.14 The contact line is generally
believed to be divided into three regions:15,16 the non-
evaporating film (nanoscale), the evaporating film (micro-
scale), and the intrinsic meniscus (milliscale). Based on the
liquid film heat transfer coefficient (hl) equation (hl = kl/δl),
since liquid thermal conductivity (kl) is constant, hl increases
as the liquid film thickness (δl) decreases. Therefore, the
thinnest nonevaporating film region should have the highest
heat transfer potential. However, adhesion forces prevent the
nonevaporating film from evaporating, giving rise to the
paradox that “no heat transfer occurs through the thinnest
liquid film.” As a result, the heat transfer potential of the
nonevaporating film remains untapped. Although Wayner et
al.17 initially proposed the lack of heat transfer in the
nonevaporating film, further research has revealed that the
nonevaporating film can significantly affect the overall
macroscopic heat transfer.18 Owing to the complex dynamics

of bubbles and testing conditions, a few experiments16,19−21

and molecular dynamics simulations22−24 have addressed the
formation and characteristics of the nonevaporating film.
Microelectromechanical systems (MEMS)25 provide poten-

tial technological support in studying the characteristics of
nanoscale nonevaporating films because one can fabricate a
microheater with nanoscale thickness, which is comparable to
the thickness of nonevaporating films, using standard
sputtering techniques. In previous literature, the bubble
frequency generated on the microheater was rarely >200 Hz
(see Table S1 in the Supporting Information), which was
considerably lower than the bubble frequency observed in the
current study, i.e., 1186 Hz. Smaller bubble sizes were found to
correspond to higher frequency and lower thermal resistance,26

which caused rapid cooling of the wall surface and the
occurrence of a “reversed” boiling curve, demonstrating the full
potential of heat transfer enhancement through the non-
evaporating film. Our experiment also revealed that the entire
lifecycle of a bubble, including nucleation, growth, and
collapse, can be completed within a very short time period
of ∼0.2 ms. This process is analogous to the quick loading and
shooting of a pistol; thus, we name the bubbles “pistol
bubbles”. Theoretical analysis further validated that the
majority of bubble growth occurred during the fast-growing
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inertia-controlled regime. Owing to the faster growth rates,
boiling heat transfer is more efficient in the inertia-controlled
regime than in the heat-transfer-controlled regime.27 Finally, a
quantitative link between the trigger for the fast pistol bubbles
and the breakup of the nonevaporating film is established.
Within the range of the heat flux q = 0−15 MW/m2, there

were three heat transfer modes (Figure 1a), where the x-axis
represents the wall superheat ΔTw = Tw − Tsat and Tw is the
wall temperature and Tsat is the saturation temperature. The
transient wall temperature (Tw(t)) of the microheater varied in
each mode, as shown in Figure 1b. (i) In the single-phase
region, ΔTw increased with anncrease in q. During a heating
time of 0−400 ms, Tw(t) did not vary substantially and no
bubbles were generated during the heating process. (ii) In the
single pistol bubbles region, ΔTw similarly increased with the
increase in q. However, within the same heating period, there
were several abrupt decreases in Tw(t) of a very short duration
(∼0.4 ms), showing clear periodicity. The abrupt decreases in
Tw(t) corresponded to the generation of big bubbles, followed

by a recovery to the average value. (iii) In the multipistol
bubbles region, ΔTw decreased instead of rising with the
increase in q. Within the same heating period, periodic abrupt
reductions and recoveries in Tw(t) were observed, similar to
the single pistol bubbles region. However, the duration of the
lower Tw(t) values was longer, and alternating occurrences of
large and small bubbles could be observed.
The heat transfer efficiency in the multipistol bubble region

differed from those of the previous two regions. As shown in
Figure 1a, the boiling curve in this heat transfer region
exhibited a return, which is usually called secondary boiling or
boiling inversion.28,29 Researchers believe that this phenom-
enon occurs because of the activation of more nucleation sites
at a high heat flux or the establishment of liquid−vapor
separation pathways, facilitating the detachment of bubbles.
However, no reports have been found that establish a
connection between this phenomenon and the rupture of
nanoscale nonevaporating films. The following section
establishes a mathematical model for the nonevaporating film

Figure 1. Three heat transfer regions on the nanoridged surface: (a) reversed boiling curve and (b) transient wall temperature fluctuations for (i)
the single-phase region, (ii) the single pistol bubbles region, and (iii) the multipistol bubbles region.

Figure 2. (a) Transient parameter fluctuations at q = 13.06 MW/m2, (b) detailed wall temperature fluctuations at 764−767 ms, and (c)
corresponding visual images at 764.8−765.1 ms.
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thickness and quantitatively analyzes the relationship between
the film thickness and ridges height within this region,
intending to find a criterion of the occurrence of the “reversal”
in the boiling curve and reveal a new mechanism for boiling
heat transfer.
As an example, Figure 2a shows the Tw(t) values for q =

13.06 MW/m2 in the single pistol bubbles region. The
moment when Tw(t) decreased corresponded to the increase in
the transient heat flux (q(t)). At the same bubble nucleation
point, a certain time interval was required for a bubble to
depart with the formation of the next bubble. This time
interval is termed the waiting time (tw). The nucleation and
growth of the bubble until the collapse also require a certain
time interval, which is called the growth time (tg). Figure 2b
shows a local magnification of the Tw(t) fluctuations within the
period of 764−767 ms. The tg value of the bubble was 0.4 ms.
The reciprocal of the sum of tw and tg is the bubble frequency
( f). The visual images in Figure 2c further confirm the rapid
growth and detachment of bubbles: the moment of bubble

appearance (t = 764.9 ms) corresponded to the minimum
value of Tw(t). The bubble nucleation was not observed at t =
764.8 ms. However, the maximum bubble growth was
observed in the next frame (t = 764.9 ms), and the bubble
detachment and collapse were completed at t = 765.0 ms and t
= 765.1 ms, respectively. After the collapse is completed, there
is no immediate generation of the next bubble. Heat transfer
entered a relatively long tw, during which energy accumulated
for generation of the next bubble. The time interval between
the appearances of the two bubbles was ∼111.2 ms (Video S1
can be found in the Supporting Information).
In the multipistol bubble region with alternating big and

small bubbles, using the condition of q = 14.69 MW/m2 as an
example, Figure 3a shows Tw(t) and q(t). Unlike the single
pistol bubble region, the Tw(t) fluctuation exhibited a two-
phase time (ttp) (78.5−112.9 and 153.4−187.4 ms) and a
single-phase time (tsp) (113−153 and 187.5−227.8 ms). ttp
produced a large number of small bubbles with very high
frequency, whereas tsp represented the time between the

Figure 3. (a) Transient parameter fluctuations at q = 14.69 MW/m2, (b) detailed wall temperature fluctuations at 302−304 ms, and (c)
corresponding visual images of the changes at 302.3−303.8 ms.
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disappearance of the last small bubble and the appearance of
the first big bubble. During this tsp, Tw(t) slowly increased.
Figure 3b shows a magnified view of the Tw(t) fluctuations
from 302 to 306 ms, displaying the growth time of the big
bubble (tg‑big), the growth time of the small bubble (tg‑small),
and the waiting time of the small bubble (tw‑small). The
definitions of tg‑small and tw‑small are the same as those of tg and.
tw in the single pistol bubbles region. Figure 3c shows visual
images of this condition. The moment when the big bubble
appeared (t = 302.4 ms) corresponded to the beginning of the
ttp. Similar to the single pistol bubbles region, the nucleation,
growth, and collapse of the big bubble were completed in ∼0.4
ms. However, unlike the single pistol bubbles region, after the
collapse of the big bubble, a large number of small bubbles
were generated within ∼0.5 ms at the same location where the
previous big bubbles were formed, with an extremely high
frequency (∼1000 Hz). Furthermore, tg‑small and tw‑small were
shorter than tg and tw. When the generation of small bubbles
ceased, the heating state entered tsp, during which energy was
accumulated for the generation of the next big bubble. The
time interval between the appearances of the two big bubbles
was ∼70.0 ms. (See Sections S6 and S7 of the Supporting
Information for the statistical results of the bubbles or Video
S2 for original recordings.)
When bubbles are small, the bubble growth is in the inertia-

controlled regime, where the growth is rapid and is limited by
the inertial force of the surrounding liquid.30 Inertia-controlled
growth is restricted to the initial stages of expansion, when the
bubble growth rate is primarily determined by its ability to
accelerate or “push back” the surrounding liquid, independent
of the rate of vapor generation in the bubble. For this case, the
bubble growth could be predicted by solving the momentum
equation alone. Assuming potential flow, integration of the
one-dimensional momentum equation in the liquid provides an
expression that describes the growth of the bubble according to
eq 1.31,32
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where Pv is the vapor pressure inside the bubble, Pb is the bulk
liquid pressure, ρl is the liquid density, R is the bubble radius,
and σ is the surface tension. The pressure rise across the
vapor−liquid interface is related by the Young−Laplace
equation Pv − Pb = 2σ/R. Equation 1, known as the extended
or modified Rayleigh equation, is an equilibrium balance
among the pressure of the vapor, the surface tension stresses,
and the net pressure imposed by the liquid. Integration of eq 1,
assuming the vapor pressure is nearly constant at Pv = Psat
(saturated pressure) and the bubble is large enough that the
surface tension term is negligible, yields the Rayleigh solution
for inertial controlled growth
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where Pv − Pb is replaced by the linearized Clapeyron equation
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sat
. T∞ is the liquid temperature

around the bubble, hfg is the latent heat of vaporization, and
ρv is the vapor density.
Equation 2 is derived from a homogeneous liquid−vapor

phase change process because boiling incipience on the

microheater is precisely a homogeneous liquid−vapor phase
change process.33 Before nucleation of the bubble, Tw is very
high, and Tw instantly decreases after nucleation, where Tw
before nucleation can be regarded as the superheated liquid
temperature around the bubble with a diameter of 0 (T∞ in eq
2). For the single pistol bubble region, Tw is taken as the
average value of Tw (t) within tw. For the multipistol bubble
region, the big bubble Tw is taken as the value of Tw(t) within
tsp, and the small bubble Tw is taken as the average value of
Tw(t) within ttp. The corresponding bubble inertia growth time
(tinertia) can be calculated using eq 2 to be 0.17−0.24 ms for the
single pistol bubble region and 0.09−0.11 ms for smaller
bubbles in the multipistol bubble region. Because the collapse
of bubbles occurred within a time scale similar to that of the
inertia growth process,34 the sum of tinertia and the collapse time
was tg ≈ 2tinertia. tg ranges from 0.34 to 0.48 ms for single pistol
bubbles and from 0.18 to 0.22 ms for smaller bubbles in the
multipistol bubble region, which are consistent with our
experiment results (see Figures 2c and 3c for examples). We
assume that boiling incipience on the microheater is a
homogeneous liquid−vapor phase change process and the
top of the bubble reaches the edge of the thermal boundary
layer before collapse. As small bubbles appear, the thermal
boundary layer thickness decreases and is assumed to be equal
to the radius of the small bubbles. The theoretical result can be
calculated from the tw calculation (eq 3;

35 hollow squares in
Figure 4)

= =t D
2w

th
2

l

2

l (3)

where δth is the thermal boundary layer thickness, αl is the
liquid thermal diffusivity, and D̅ is the bubble average diameter.
By comparing the classical theoretical calculations with the
experimental data, we conclude that small bubbles in the
multipistol bubble region lead to a reduction in δth and a
shorter tw, eventually causing an increase in the bubble
frequency.
As mentioned previously, the contact line at the base of the

bubble can be divided into three regions (Figure 5a). Initially,
the evaporating film approaches the wall with a practical
curvature of slope K = Kbubble, which defines the intrinsic static
contact angle θ. The evaporating film in this region has
essentially the same curvature as the intrinsic meniscus in the

Figure 4. Waiting time of bubble generation decreases sharply when
entering the multipistol bubble region.
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macro region. The transition region occurs between the
nonevaporating and evaporating films, and the liquid film
varies in thickness and curvature to accommodate the
transition between the two regions. This is the thinnest
portion of the meniscus over which the highest evaporation
can occur.36 The high evaporation rates in the micro region
then create a significant transverse liquid flow. In the micro
region where the meniscus approaches the wall, the short-
range attractive forces between the liquid molecules and the
wall atoms become significant, producing an adhesion pressure
in the liquid. The adhesion pressure tends to steadily reduce
the interface curvature in the flow direction until the meniscus
levels out at the end of the micro region, forming a stationary
nonevaporating film. Here, we introduce solid nano ridges to
manipulate this liquid film. When the ridge height (H) is
greater than the nonevaporating film thickness (δ0), the film
breaks into independent slabs of water between the ridges
(Figure 5b). The curvature of the water slabs is greater than
that of the complete nonevaporating film (Figure 5c) because
of the additional hydrophilic ridge surface−water force.
Therefore, the curvature of the nonevaporating region
increases, the evaporation pressure decreases, and the liquid
molecules in the nonevaporating region are activated.
The relationship between δ0 and H determines the

generation of small bubbles in the multipistol bubble region.
Once the H overcomes δ0, the negative slope of the boiling
curve and appearance of small bubbles show up in the

multipistol bubble region. A greater number of small bubbles
(N) and shorter tsp (Figure 5d) lead to a stronger cooling effect
for the microheater wall, accounting for the negative slope.
Since H can be obtained by a Bruker Contour GT-K-Elite
instrument (Germany), we should know δ0 to make a
quantitative comparison. By modifying the Mikic and
Rohsenow37 model after coupling the nonevaporating film
heat transfer mechanism, the relevant equations are obtained
as16,19

= [ ]q
k T T

D f f
2 ( )

Nal w sat

l

2
ne

(4)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
= ×

h T T

T
Na 25 10

( )8 fg v w sat

sat

1.5 2

(5)

=f
V

V Vne
b

b ne (6)

i
k
jjj y

{
zzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjj y

{
zzz

i
k
jjj y

{
zzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

= +

+ +

V D D D

D D

6 2 2
cos 3

2
sin

2 2
cos

b

2
2

2

(7)

Figure 5. (a) Three regions underneath a boiling bubble near the contact line: nonevaporating film, evaporating film, and intrinsic meniscus. (b)
Additional evaporation when the ridge height H is higher than the nonevaporating film thickness δ0. (c) A complete nonevaporating film when H is
lower than the δ0. (d) Variations of number of small bubbles and single-phase time tsp with heat flux q. (e) Variation of δ0 with q.
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where kl is the liquid thermal conductivity, Na is the nucleation
site density, f ne is the nonevaporating film factor, Vb is the
hemispherical bubble volume, Vne is the equivalent vapor
volume of the nonevaporating film beneath the bubble, MHd2O is
the molecular mass of water, Rg is the ideal gas constant, rne is
the nonevaporating film spread radius, δ0 is the nonevaporating
film thickness, W is the ridge width, and S is the ridge spacing.
Thus, δ0 is obtained by combining eq 4−8 as follows:
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Zhao et al.38 developed an expression for the rne as a
function of tg, which expanded upon the theoretical and
experimental analysis of microlayer growth proposed by
Cooper and Lloyd39
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where cpl is the specific heat of the liquid, Pr is the Prandtl
number, tne is the microlayer formation time, and Cne is the
correction factor (for boiling on the microheater, Cne =
0.1156).40

The result from eq 9 was obtained, as shown in Figure 5e.
The gray blocks represent the range of the ridge height. In the
single pistol bubble region, the calculated results almost all fell
above the gray blocks, demonstrating that δ0 > H. At this time,
the nonevaporating film was not destroyed into independent
liquid blocks with curvature, and according to the afore-
mentioned nonevaporating film theory, no additional evapo-
ration occurred on the intact noncurvature nonevaporating
film. However, in the multipistol bubble region, the calculated
results all fell below the gray block, demonstrating that δ0 < H.
The flat superheated liquid inside the nonevaporating film was
broken into separate liquid blocks by the microheater ridges,
and the liquid blocks formed curvature at the “slope” because
of the wetting nature of microheater trapezoidal ridges. The
separate liquid blocks in the nonevaporating region could
generate additional evaporation at the slope. Thus, the heat
transfer potential in the nonevaporating region was stimulated,
resulting in a large number of small bubbles under high heat
flux, a long period of low wall superheat in Tw(t) fluctuations,
and a negative slope of the boiling curve.
In summary, we realized a new heat transfer mechanism

using nanoridges to disrupt the previously nonevaporating
region and achieve the highest bubble frequency to the best of
the authors’ knowledge. Our work opens a new way of micro/
nano scale thermal management as well as bubble regulation
using nanotechnologies.
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