Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

The roadmap towards the efficiency limit for supercritical carbon dioxide coal fired power plant

Zhaofu Wang^a, Haonan Zheng^a, Jinliang Xu^{a,b,*}, Mingjia Li^c, Enhui Sun^{a,b}, Yuandong Guo^a, Chao Liu^a, Guanglin Liu^{a,b}

^a Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
^b Key Laboratory of Power Station Energy Transfer Conversion and System (North China Electric Power University), Ministry of Education, Beijing 102206, China
^c Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi,

710049, China

ARTICLE INFO

Keywords: sCO₂ cycle Efficiency limit Coal-fired power plant Overlap energy utilization Module boiler design

ABSTRACT

The Chinese Government has issued a series of documents to explain China's control over the carbon dioxide (CO₂) emission. One of the major tasks is to develop higher efficiency coal fired power plant, compared with current running power plant. In this paper, we aim to explore the roadmap to reach the efficiency limit for coal fired power plant using supercritical carbon dioxide cycle (sCO2 cycle). Referenced to Carnot cycle, the proposed roadmap is to increase the cycle efficiency by elevating average heat absorption temperature $(T_{ave b})$ and lowering average heat release temperature ($T_{ave,l}$). In contrast to recompression cycle (RC), tri-compression cycle (TC) is introduced. Due to the increased $T_{\rm ave,h}$ TC achieves the second largest contribution for efficiency increment, followed by the reheating technique. Then, TC, double reheating (DRH) and intercooling (IC) are integrated as TC + DRH + IC in the power plant. To completely absorb flue gas energy over entire temperature range of $(1500 \sim 120)$ °C. A top cycle and a bottom cycle are connected for cascade utilization of flue gas energy. Overlap energy utilization is further utilized to fill the efficiency gap between top and bottom cycles. The proposed cycle also integrates the module boiler design to suppress the pressure drop penalty, and the flue gas recirculation to keep the heater surface temperature in an accepted level. A numerical model is developed for the comprehensive sCO2 cycle. At the main vapor parameters of 35 MPa/630 °C, the sCO2 coal fired power plant reaches the net power generation efficiency of 51.03%, which is higher than 48.12% for a supercritical watersteam power plant at the same capacity. Such efficiency improvement saves 175.2 kilotons of coal and reduces 396.4 kilotons of CO2 emission for 1000 MW capacity in a fascial year. Our work provides the guideline for the design and operation of large scale sCO2 coal fired power plant.

1. Introduction:

Global climate change is the most significant environmental problem in the 21st century [1]. The Chinese government promises to peak carbon dioxide emissions by 2030 and strives to achieve carbon neutralization by 2060 [2]. China's raw coal production and consumption account for approximately 68.6% and 57.7% of the primary energy production and consumption respectively in 2019 [3]. Dominant role of coal in China's energy supply is expected to remain unchanged for decades [2]. Hence, it is necessary to promote clean and efficient utilization of coal to reduce the carbon dioxide (CO₂) emission. Coal-fired power plants based on steam-Rankine cycle have been widely utilized for a long history. It is known that thermal efficiency of the power plant increases by raising vapor temperature at the turbine inlet [4]. Nowadays, the state of art coal-fired power plant achieves around 48.12% net efficiency with steam parameters of 32.87 MPa/605 °C/623 °C/623 °C [5], in which 32.87 MPa is the maximum pressure at the turbine inlet, 605 °C is the steam temperature entering the high-pressure cylinder of the turbine, the first and second 623 °C refer to the steam temperatures entering the moderate-pressure cylinder and the low-pressure cylinder of the turbine, respectively. Water-vapor reacts with metal materials at ultra-high temperatures, introducing the difficulty to further explore the efficiency potential. Supercritical carbon dioxide cycle (sCO_2 cycle) uses sCO_2 consecutively flowing through various components to convert thermal energy into power. The sCO_2 cycle is believed to have higher

* Corresponding author. *E-mail address*: xjl@ncepu.edu.cn (J. Xu).

https://doi.org/10.1016/j.enconman.2022.116166

Received 28 April 2022; Received in revised form 11 August 2022; Accepted 18 August 2022 Available online 31 August 2022 0196-8904/© 2022 Elsevier Ltd. All rights reserved.

ave average Ba coal consumption rate, kg/s c ba coal consumption rate except unburned, kg/s cal calculated value ba coal consumption rate except unburned, kg/s cal calculated value ba except standard coal consumption per kilowatt hour, g/ exg extention tecover cm component cost, \$ f fluid, friction CHF investment recovery factor j type of components Cm the ratio of component materials and labor cost to fg flue gas component cost, \$ fliame theoretical combusion exspecific exergy, kl/kg h high temperature side are exergy, kletertricity generated, kW-h t inert of tube; inlet of medium temperature flue gas heater; friction coefficient net net prover out put o outer of tube; outer of tube; outer of nube; outer of	Nomencl	ature	ar	received basis of the designed coal
B colument consumption rate, kg/s c high temperature side Bend calculated value calculated value by average standard coal consumption per kilowatt hour, g/ e electric power C component cost, \$ f fluid, friction C component cost, \$ f fluid, friction C component cost, \$ fluid, friction d diameter, n fluid the traito of component materials and labor cost to fg fluid, friction e specific exergy, kJ/kg h high temperature side methoretical combustion e specific exergy, kJ/kg h high temperature side methoretical combustion e exergy (kelectricity generated, kW-h fluid the the species methoretical combustion f friction coefficient net net prover out put o outer of tube, outlet of medium temperature flue gas heater, the i-th species f exergy destruction, MW sec sec secondary th f nearbor kg/s p pipeline sec secondary f heant absorption per unit mass,			ave	average
B_{ext} coal consumption rate except unburned, B_2/s calculated value B_{ext} coal consumption per kilowatt hour, $g/$ estelectric power Wh estexhaust flue gasComponent cost, \$ffluid (friction CRF investment recovery factorjtype of components $Camethe ratio of component materials and labor cost tofgflue gasddiameter, mflametheoretical combustionespecific exergy, kl/xl/ghhigh temperature sideerescalation rate over the yearsiinner of tube; intel of medium temperature flue gas heater;the ich speciesffriction coefficientnetnet power out putGmass flux, kg/m2sooilength of component, mththe reth speciesIlength of component, mththermalmmass flow rate, kg/shpreheaterPpresume, MPaAbbreviationPpresume, MPaAPair preheaterC1/, C2, C3 the auxiliary compressorqheat absorption per unit mass flow rate, kW/kg; heat losspercentage of boiler, %Qthermal load, MW; heating value, kJ/kgDRHPexting parameter of components for economic evaluationTtemperature, forupplant utilization factorFGWoutput/ input work per unit mass, kJ/kgDRHWoutput/ input work, MWLCOEAPait retail and prehestaterT$	В	coal consumption rate, kg/s	с	high temperature side
b_p wWhaverage standard coal consumption per kilowatt hour, g/ wheeelectric power C component cost, \$ffluid; friction CRF investment recovery factorjtype of components CRF investment recovery factorjfluid; friction CRF investment recovery factorjfluid; friction CRF investment recovery factorjfluid; friction $component costfhfly ash after coal fireddiameter, mflametheoretical combustionespecific exergy, kl/kghhespecific exergy, kl/kghhffriction coefficientnetnet power out putGmass flux, kg/m²soout out of ube; out led of medium temperature flue gas heaterhenthalpy per unit mass, kl/kgppipelinenmass flow rate, kg/sppipelinePpressure, MPaAPair preheaterPpressure, MPaAPair preheaterPpresting or electric consumption discounted ratesentropy per unit mass, kl/kgGftflue gas cooler; a method to absorb residual flue gas heatpercentage of boiler, %CI'CC3the auxiliary compressorCIthe main compressorCI'fC4fnettring or electric consumption discounted rateasentropy per unit mass, kJ/kgFGflue gas cooler; a method to absorb residual flue gas heatp$	$B_{\rm cal}$	coal consumption rate except unburned, kg/s	cal	calculated value
kWhesgexhaust flue gasCcomponent costffluid (frictionCRFinvestment recovery factorjtype of componentsCmathe ratio of component materials and labor cost tofgflue gasddiameter, mflametheoretical combustionespecific xergy, kl/kghherescalation rate over the yearsiinner of tube; inlet of medium temperature flue gas heater;ffriction coefficientnetnet prover out putGmass flux, kg/m ³ oouter of tube; outlet of medium temperature flue gas heaterfriction coefficientnetnet prover out putGmass flux, kg/m ³ oouter of tube; outlet of medium temperature flue gas heaterfexergy distruction, MWsecsecondaryllength of component, mththermalmmass flow rate, kg/sAbbreviationPpresture, MPaAPaf preheaterfrictio of heating or electric consumption discounted rateCIthe anian compressorcl'ccaling parameter of components for econonic evaluationThe auxillary compressorfrictio of heating or electric consumption discounted rateFCfour compression cyclegplent utilization factorFRFIRhydre eleatingfupper unit mass, kJ/kg;FTfour function coefficientGTfupper unit mass, kJ/kg;FTFCfour compression cycleg <td>bg</td> <td>average standard coal consumption per kilowatt hour, g/</td> <td>e</td> <td>electric power</td>	bg	average standard coal consumption per kilowatt hour, g/	e	electric power
Ccomponent cost, \$ffluid; frictionCRFinvestment recovery factorjtype of components c_{inn} the ratio of component materials and labor cost tofgflue gas c_{inn} the ratio of component costfnfly ash after coal firedddiameter, mflametheoretical combustionespecific exergy, kl/kghhhigh temperature sideeexergy, kl/chectricity generated, kW-hinner of tube; outlet of medium temperature flue gas heater;ffriction coefficientnetnet power out putGmass flux, kg/m²sooutlet of tube; outlet of medium temperature flue gas heater;henthalpy per unit mass, kl/kgppipelinenmass flow rate, kg/sPpipelinePpressure, MPaAbbreviationPrpressure, MPaAbbreviationPrpressure, MPaAbbreviationqheat absorption per unit mass flow rate, kW/kg; heat lossCIgthe rabin compressorCI', C2, C3 the auxiliary compressorgtermal load, MW; heating value, kl/kg;DRHdouble reheatinggscaling parameter of components for economic evaluationFGCflue gas scooler; a method to absorb residual flue gas heatgplant utilization factorFGRflue gas recirculationgwoutput/ input work, MWLCOElevelized cost of electricitygboler heat retention coefficientFGRflue gas recirculationg <td></td> <td>kW·h</td> <td>exg</td> <td>exhaust flue gas</td>		kW·h	exg	exhaust flue gas
CRF investment recovery factor j type of components cmm the ratio of component materials and labor cost to fg flue gas d diameter, m flue flue d diameter, m flue flue er escific exergy, kl/kg h high temperature side er exergy, kl/efcrity generated, kW-h i inner of tube; inlet of medium temperature flue gas heater; f friction coefficient net net power out put G mass flux, kg/m ² o outer of tube; outer of medium temperature flue gas heater; f erresp destruction, MW sec secondary l length of component, m th thermal m mass flux, kg/m ² o outer of tube; outer of medium temperature flue gas heater f p pressure, MPA AP air preheater T exergy destruction, MW sec secondary l length of component, m th thermal m mass flux, kg/m ² AP air preheater f pressure, MPA AP air preheater f ratio of heating or electric consumption discounter rate FC fout compression cycle g	С	component cost, \$	f	fluid; friction
cmsthe ratio of component materials and labor cost to component costfgflue gas fly ash after coal fired fly ash after coal firedddiameter, mflametheoretical combustionespecific exergy, k1/kghhigh temperature sideespecific exergy, k1/kghhigh temperature sideeexergy, k2/kelectricity generated, kW-hiinter of tube; inlet of medium temperature flue gas heater; the i-th speciesffriction coefficientnetnet of tube; outlet of medium temperature flue gas heaterhenthalpy per unit mass, k1/kgppipelineilength of component, mththermalmmass flow rate, kg/sAbbreviationPpressure, MPaAPair preheaterfheat absorption per unit mass flow rate, kW/kg; heat loss percentage of boiler, %C1the main compressorqheat absorption per unit mass flow rate, kW/kg; heat loss percentage of boiler, %C1the main compressorgscaling parameter of component for economic evaluationFGfGflue gas cooler is arranged in boiler tail fluerratio of heating or electric consumption discounted rate sexternal air preheaterFGflue gas cooler is arranged in boiler tail fluegboiler heat retention coefficientMTRhow-temperature recuperatorfupper unit mass, k1/kgHTRhigh-temperature recuperatorfboiler heat retention coefficientMTRmode-temperature recuperatorfexte	CRF	investment recovery factor	j	type of components
component costfnfly ash after coal firedddiameter, mfnametheoretical combustionespecific exergy, kJ/kghhigh temperature sideerexergy, kJelectricity generated, kW-hiinner of tube; inlet of medium temperature flue gas heater;ffriction coefficientnet inner of tube; inlet of medium temperature flue gas heater;ffriction coefficientnet inner of tube; outlet of medium temperature flue gas heater;fentbalpy per unit mass, kJ/kgpllength of component, mthe thermalmmass flow rate, kg/sAbbreviationPpressure, MPaAPrratio of heating or lectric consumption discounted rateC1', C2, C3 the auxiliary compressorgheat absorption per unit mass, kJ/kgCTBgheat absorption per unit mass, kJ/kgCTBgheat absorption per unit mass flow rate, kW/kg; heat losspertenatergheat absorption per unit mass flow rate, kW/kg; heat lossCTI', C2, C3 the auxiliary compressorgcatter of components for economic evaluationCTIgentropy per unit mass, kJ/kgCTBgplant utilization factorFAPwoutput/ input work, per unit mass, kJ/kgCTGuplant utilization factorFCGwoutput/ input work, MWLCOEuplant enterCTIgboiler heat retention coefficientMTR Δ difference; absolute roughness of tubes, mm	c_{ins}	the ratio of component materials and labor cost to	fg	flue gas
ddiameter, nflameflooretical combustionespecific exergy, kJ/kghhigh temperature siderescalation rate over the yearsiinner of tube; inite 1 of medium temperature flue gas heater; the i-th speciesEexergy, kJelectricity generated, kW-hnet power out putGmass flux, kg/m ³ soouter of tube; outlet of medium temperature flue gas heaterhenthalpy per unit mass, kJ/kgppipelinellength of component, nsecsecondaryllength of component, nththermalmmass flow rate, kg/sAbreviationPpressure, MPaAPair preheaterrrandition or entition or entiti		component cost	fh	fly ash after coal fired
especific exergy, kJ/kghhigh temperature sideerexcalation rate over the yearsiinner of tube; inlet of medium temperature flue gas heater; the icht speciesffriction coefficientnetnet power out putGmass flux, kg/m ³ soouter of tube; outlet of medium temperature flue gas heater p pipelineIenthalpy per unit mass, kJ/kgppipelineIexergy destruction, MWsecsecondaryIlength of component, mthe thermalmmass flow rate, kg/sAbreviationPpressure, MPaAPArr Prandtl numberAPqheat absorption per unit mass flow rate, kW/kg; heat loss percentage of boiler, %CIQthermal load, MW; heating value, kJ/kgCTBReReynolds numberEAPrratio of heating or electric consumption discounted rate sentropy per unit mass, kJ/kg;SPscaling parameter of components for economic evaluationFGCWoutput/ input work, MWCCBexernal air preheaterwoutput/ input work, MWCCintercoolingxsplit ratioLCOEintercoolingGreek symbolsLTRLow erating valueGreek symbolsLTRLow erater ϕ boiler heat retention coefficientMT A difference; absolute roughness of tubes, mmOEU A difference; absolute roughness of tubes, mmOEU A difference; absolute roughness of tube	d	diameter, m	flame	theoretical combustion
erescalation rate over the yearsiinner of tube; inlet of medium temperature flue gas heater; the <i>i</i> -th speciesEexergy, kJelectricity generated, kW-hthe <i>i</i> -th speciesthe <i>i</i> -th speciesffriction coefficientoouter of tube; unlet of medium temperature flue gas heatergmass flux, kg/m ² soouter of tube; unlet of medium temperature flue gas heaterhenthalpy per unit mass, kJ/kgppipelinegheat absorption per unit mass flow rate, kg/sAbbreviationPPressure, MPaAPair preheaterqheat absorption per unit mass flow rate, kW/kg; heat loss percentage of boiler, %CIthe main compressorQthermal load, MW; heating value, kJ/kgCTBconnect-top-bottom cycleFratio of heating or electric consumption discounted rateEAPexternal air preheatersentropy per unit mass, kJ/kg;FGCflue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas recirculationTtemperature, °CLTRflue gas recirculationwoutput/ input work, MW xLCOElevelized cost of electricityk1thermal conductivity, W(m-K)KTfliefticner ϕ difference; absolute roughness of tubes, mmOEUoverlap energy utilization Δ difference; absolute roughness of tubes, mmOEU <t< td=""><td>е</td><td>specific exergy, kJ/kg</td><td>h</td><td>high temperature side</td></t<>	е	specific exergy, kJ/kg	h	high temperature side
Eexergy, kJelectricity generated, kW-hthe <i>i</i> -th speciesffriction coefficientnetfmass flux, kg/n^2sonet metapy per unit mass, kJ/kgpllength of component, mmmass flow rate, kg/sPpressure, MPaPrPradul numberqheat absorption per unit mass flow rate, kW/kg; heat lossppercentage of boiler, %Qthermal load, MW; heating value, kJ/kgReReynolds numberrratio of heating or electric consumption discounted ratesentropy per unit mass, kJ/kg;SPscaling parameter of components for economic evaluationTtemperature; ~CWoutput/ input work, MWxsplit ratioGreek symbolsLCWoutput/ input work, MWxsplit ratio Δ difference; absolute roughness of tubes, mm A thermal conductivity, W/m*K) <td>er</td> <td>escalation rate over the years</td> <td>i</td> <td>inner of tube; inlet of medium temperature flue gas heater;</td>	er	escalation rate over the years	i	inner of tube; inlet of medium temperature flue gas heater;
ffriction coefficientnetnet power out putGmass flux, kg/m ² soouter of tube; outlet of medium temperature flue gas heaterhenthalpy per unit mass, kJ/kgppipelineIexergy destruction, MWsecsec outlet of medium temperature flue gas heaterIlength of component, mththermalmmass flow rate, kg/sppipelinePpressure, MPaAbAbbreviationPrPrandtl numberCIthe main compressorQthermal load, MW; heating value, kJ/kgCI', C2, C3 the auxiliary compressorQthermal load, MW; heating value, kJ/kgDRHdouble reheatingcfor compression cycleFratio of heating or electric consumption discounted rateFCsentropy per unit mass, kJ/kgFGCflue gas recirculationHTRflue gas recirculationHTRflue gas recirculationHTRkwoutput/ input work, MWxsplit ratioCtranspectorflue creek symbolsLTRwoutput/ input work, MW Δ difference; absolute roughness of tubes, mm Δ difference; absolute roughness of tubes, mm Δ difference; absolute roughness of tubes, mm Δ difference; dasolut roughness of tubes, mm Δ difference; absolute roughness of tubes, mm Δ difference; dasolut roughness of tubes, mm Δ difference; dasolut roughness of tubes, mm <td>Ε</td> <td>exergy, kJelectricity generated, kW·h</td> <td></td> <td>the <i>i</i>-th species</td>	Ε	exergy, kJelectricity generated, kW·h		the <i>i</i> -th species
Gmass flux, kg/m ³ soouter of tube; outlet of medium temperature flue gas heaterhenthalpy per unit mass, kJ/kgppipelineiexergy destruction, MWsecsecondaryllength of component, mththermalmmass flow rate, kg/sAbbreviationPpressure, MPaAbbreviationPrPrandtl numberAPqheat absorption per unit mass flow rate, kW/kg; heat lossCIQthermal load, MW; heating value, kJ/kgCTBReReynolds numberDRHrratio of heating or electric consumption discounted ratesentropy per unit mass, kJ/kg;FGCSPscaling parameter of components for economic evaluationTtemperature, °Cuplant utilization factorFGRWoutput/ input work, per unit mass, kJ/kgHTRWoutput/ input work, MWLCOExsplit ratioLTRGreek symbolsLTR φ boiler heat retention coefficient Δ difference; absolute roughness of tubes, mm Δ difference; absolute roughness of tubes, mm Δ difference; absolute roughness of tubes, mm Δ difference; heat retention coefficient Δ difference; absolute roughness of tubes, mm Δ difference; absolute roughness of tubes, mm Δ difference; hereating φ thermal of i-th species to the total flue gas γ efficiency ρ </td <td>f</td> <td>friction coefficient</td> <td>net</td> <td>net power out put</td>	f	friction coefficient	net	net power out put
henthalpy per unit mass, kJ/kgppipelineIexergy destruction, MWsecsec ondaryIlength of component, mthmmass flow rate, kg/sAbbreviationPpressure, MPaAPair preheaterAPqheat absorption per unit mass flow rate, kW/kg; heat lossC1percentage of boiler, %C1Qthermal load, MW; heating value, kJ/kgCTReReynolds numberC1rratio of heating or electric consumption discounted rateFCsentropy per unit mass, kJ/kg;FCSPscaling parameter of components for economic evaluationFGCTtemperature, 'CHTRuplant utilization factorFGRwoutput/ input work, MWLCOExsplit ratioLCOEGreek symbolsLTR φ holler heat retention coefficient Δ difference; absolute roughness of tubes, mm ΔP pressure drop, MPa γ efficiency ρ density, kg/m ³ λ thermal conductivity, W/(m.K) ϕ thermal conductivity, W/(m.K) ϕ thermal conductivity, W/(m.K) ϕ environment λ thermal conductivity, W/(m.K) ϕ environment λ thermal conductivity, W/(m.K) ϕ environment λ tate points	G	mass flux, kg/m^2s	0	outer of tube; outlet of medium temperature flue gas heater
Iexergy destruction, MWsec	h	enthalpy per unit mass, kJ/kg	D	pipeline
1 length of component, m th thermal m mass flow rate, kg/s Abbreviation P pressure, MPa AP air preheater q heat absorption per unit mass flow rate, kW/kg; heat loss C1 the mail compressor Q thermal load, MW; heating value, kJ/kg C1 the auxiliary compressor Q thermal load, MW; heating value, kJ/kg CTB connect-top-bottom cycle Re Reynolds number CFG four compression cycle r ratio of heating or electric consumption discounted rate s eCf four compression cycle SP scaling parameter of components for economic evaluation FGC flue gas recirculation T temperature, °C FGR flue gas recirculation w output/ input work, MW ICC flue gas recirculation x split ratio FGR flue gas recirculation Greek symbols LTR low-temperature recuperator φ boiler heat retention coefficient MTR mode-temperature recuperator AD difference; absolute roughness of tubes, mm OEU overlap energy utilization	Ι	exergy destruction. MW	sec	secondary
mmass flow rate, kg/sAbbreviation P pressure, MPaAP P pradul number AP q heat absorption per unit mass flow rate, kW/kg; heat loss percentage of boiler, % AP Q thermal load, MW; heating value, kJ/kg $C1'$, $C2$, $C3$ the auxiliary compressor Q thermal load, MW; heating value, kJ/kg CTB Re Reynolds number $Reynolds$ number r ratio of heating or electric consumption discounted rate s entropy per unit mass, kJ/kg; F scaling parameter of components for economic evaluation T temperature, °C u plant utilization factor W output/ input work per unit mass, kJ/kg W output/ input work, MW x split ratio $Greek symbols$ LTR $Greek symbols$ LTR ϕ boiler hear retention coefficient Δ difference; absolute roughness of tubes, mm A	1	length of component, m	th	thermal
Ppressure, MPaAbbreviationPpressure, MPaAPair preheaterqheat absorption per unit mass flow rate, kW/kg; heat loss percentage of boiler, %CIthe main compressorQthermal load, MW; heating value, kJ/kgCTBconnect-top-bottom cycleReReynolds numberDRHdouble reheatingrratio of heating or electric consumption discounted rate sentropy per unit mass, kJ/kg;DRHSPscaling parameter of components for economic evaluation Ttemperature, °Cflue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas to intercoolingxsplit ratioICCintercoolingxsplit ratioICCintercoolingxsplit ratioICNMTRdifference; absolute roughness of tubes, mmOEU overlap energy utilization ΔP pressure drop, MPaPFM q thermal conductivity, W/(m-K)RH<	m	mass flow rate, kg/s		
Pr Pr Prandtl numberAPair preheaterqheat absorption per unit mass flow rate, kW/kg; heat loss percentage of boiler, %APair preheaterQthermal load, MW; heating value, kJ/kgC1the main compressorReReynolds numberCTBconnect-top-bottom cyclerratio of heating or electric consumption discounted rate sentropy per unit mass, kJ/kg;DRHdouble reheatingSPscaling parameter of components for economic evaluation Ttemperature, °CFGCflue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas cooler is arranged in boiler tail flueGGreek symbols p boiler heat retention coefficientLTR <td>P</td> <td>pressure. MPa</td> <td>Abbreviat</td> <td>ion</td>	P	pressure. MPa	Abbreviat	ion
qheat absorption per unit mass flow rate, kW/kg; heat loss percentage of boiler, %Clthe main compressor C1', C2, C3 the auxiliary compressor cycle<	Pr	Prandtl number	AP	air preheater
qInterviewC1', C2, C3the auxiliary compressorQthermal load, MW; heating value, kJ/kgCTBconnect-top-bottom cycleReReynolds numberDRHdouble reheatingrratio of heating or electric consumption discounted rateEAPexternal air preheatersentropy per unit mass, kJ/kg;FCfour compression cycleSPscaling parameter of components for economic evaluationFGCflue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat the mato constructiongboiler heat retention coefficientLT	а. а	heat absorption per unit mass flow rate kW/kg heat loss	C1	the main compressor
Qthermal load, MW; heating value, kJ/kgCTBconnect-top-bottom cycleReReynolds numberDRHdouble reheatingrratio of heating or electric consumption discounted rateEAPexternal air preheatersentropy per unit mass, kJ/kg;FCfour compression cycleSPscaling parameter of components for economic evaluationFCCfour compression cycleuplant utilization factorFGCflue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat 	4	percentage of hoiler %	C1′, C2, 0	C3 the auxiliary compressor
Re Reynolds numberInterferenceDRHdouble reheating r ratio of heating or electric consumption discounted rate EAP external air preheater s entropy per unit mass, kJ/kg ; FC four compression cycle SP scaling parameter of components for economic evaluation FGC flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler is arranged in boiler tail flue T temperature, °C FGR flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler is arranged in boiler tail flue w output/ input work per unit mass, kJ/kg HTRhigh-temperature recuperator W output/ input work, MWICintercooling x split ratioLCOElevelized cost of electricity x split ratioLTRlow-temperature recuperator ϕ boiler heat retention coefficientMTRmode-temperature recuperator Δ difference; absolute roughness of tubes, mmOEUoverlap energy utilization ΔP pressure drop, MPaPFMpartial flow mode η efficiencyRCrecompression cycle ρ density, kg/m ³ RHreheating λ thermal conductivity, W/(m·K)RH1, RH2, RH3, RH4reheater 1, reheater 2, reheater 3, reheater 4 ϕ the ratio of the volume of <i>i</i> -th species to the total flue gas volumeSCsimple cycle $Subscripts$ environmentTCtri-compression c	0	thermal load MW heating value k.I/kg	CTB	connect-top-bottom cycle
ResResEAPexternal air preheaterrratio of heating or electric consumption discounted rateEAPexternal air preheatersentropy per unit mass, kJ/kg;FCfour compression cycleSPscaling parameter of components for economic evaluationFGCflue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat fue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat the mato fue work, MWGreek symbolsICintercoolingGreek symbolsITRlower theat retention coefficient Δ difference; absolute roughness of tubes, mmOEU ϕ efficiencyRC <td>ч Re</td> <td>Revnolds number</td> <td>DRH</td> <td>double reheating</td>	ч Re	Revnolds number	DRH	double reheating
sentropy per unit mass, kJ/kg;FCfour compression cycleSPscaling parameter of components for economic evaluationFCfour compression cycleTtemperature, °CFGCflue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler; a method to absorb residual flue gas heat 	r	ratio of heating or electric consumption discounted rate	EAP	external air preheater
SPscaling parameter of components for economic evaluationFGCflue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler is arranged in boiler tail flueTtemperature, °CFGRflue gas cooler; a method to absorb residual flue gas heat which a flue gas cooler is arranged in boiler tail fluewoutput/ input work per unit mass, kJ/kgFGRflue gas recirculationWoutput/ input work, MWICintercoolingxsplit ratioICOElevelized cost of electricityGreek symbolsLTRlow-temperature recuperator ϕ boiler heat retention coefficientMTRmode-temperature recuperator Δ difference; absolute roughness of tubes, mmOEUoverlap energy utilization ΔP pressure drop, MPaPFMpartial flow mode η efficiencyRCrecompression cycle ρ density, kg/m ³ RHreheating λ thermal conductivity, W/(m-K)RH1, RH2, RH3, RH4reheater 1, reheater 2, reheater 3, reheater 4 ϕ the ratio of the volume of <i>i</i> -th species to the total flue gas volumeSCsimple cycleSubscriptsTCtri-compression cycle0environmentTCtri-compression cycle1, 2, 3state pointsTCtri-compression cycle	r c	entrony per unit mass k L/kg	FC	four compression cycle
oneSection function of components for combined evaluationwhich a flue gas cooler is arranged in boiler tail flue T temperature, °CFGRflue gas recirculation u plant utilization factorFGRflue gas recirculation w output/ input work per unit mass, kJ/kgHTRhigh-temperature recuperator W output/ input work, MWICintercooling x split ratioLCOElevelized cost of electricity $reck symbols$ LTRlow-temperature recuperator ϕ boiler heat retention coefficientMTR Δ difference; absolute roughness of tubes, mmOEU ΔP pressure drop, MPaPFM η efficiencyRC ρ density, kg/m ³ RH λ thermal conductivity, W/(m·K)RH1, RH2, RH3, RH4 ϕ the ratio of the volume of <i>i</i> -th species to the total flue gas volumeSCSubscriptsTCtri-compression cycle0environmentTC1, 2, 3state pointsTK	SD	scaling parameter of components for economic evaluation	FGC	flue gas cooler; a method to absorb residual flue gas heat
1Itemperature, Guplant utilization factorFGRflue gas recirculationwoutput/ input work per unit mass, kJ/kgHTRhigh-temperature recuperatorWoutput/ input work, MWICintercoolingxsplit ratioLCOElevelized cost of electricityKboiler heat retention coefficientLTRlower heating value ϕ boiler heat retention coefficientMTRmode-temperature recuperator Δ difference; absolute roughness of tubes, mmOEUoverlap energy utilization ΔP pressure drop, MPaPFMpartial flow mode η efficiencyRCrecompression cycle ρ density, kg/m ³ RHreheating λ thermal conductivity, W/(m-K)RH1, RH2, RH3, RH4reheater 1, reheater 2, reheater 3, reheater 4 ϕ the ratio of the volume of <i>i</i> -th species to the total flue gas volumeSCsimple cycleSubscriptsT1, T2, T3turbine0environmentTCtri-compression cycle1, 2, 3state pointsTCtri-compression cycle	T	temperature °C		which a flue gas cooler is arranged in boiler tail flue
apinit utilization factorHTRhigh-temperature recuperatorwoutput/ input work per unit mass, kJ/kgHTRhigh-temperature recuperatorWoutput/ input work, MWLCOElevelized cost of electricityxsplit ratioLCOElevelized cost of electricityGreek symbolsLTRlow-temperature recuperator ϕ boiler heat retention coefficientMTRmode-temperature recuperator Δ difference; absolute roughness of tubes, mmOEUoverlap energy utilization ΔP pressure drop, MPaPFMpartial flow mode η efficiencyRCrecompression cycle ρ density, kg/m ³ RHreheating λ thermal conductivity, W/(m·K)RH1, RH2, RH3, RH4reheater 1, reheater 2, reheater 3, reheater 4 ϕ the ratio of the volume of <i>i</i> -th species to the total flue gas volumeSCsimple cycleSubscriptsT1, T2, T3turbine0environmentTCtri-compression cycle1, 2, 3state pointsTCtri-compression cycle	1	plant utilization factor	FGR	flue gas recirculation
woutput/ input work per unit mass, K/ kgICintercoolingWoutput/ input work, MWICintercoolingxsplit ratioIClevelized cost of electricityGreek symbolsLTRlow-temperature recuperator φ boiler heat retention coefficientMTRmode-temperature recuperator Δ difference; absolute roughness of tubes, mmOEUoverlap energy utilization ΔP pressure drop, MPaPFMpartial flow mode η efficiencyRCrecompression cycle ρ density, kg/m ³ RHreheating λ thermal conductivity, W/(m·K)RH1, RH2, RH3, RH4reheater 1, reheater 2, reheater 3, reheater 4 ϕ the ratio of the volume of <i>i</i> -th species to the total flue gas volumeSCsimple cycleSubscriptsTCtri-compression cycle0environmentTCtri-compression cycle1, 2, 3state pointsTKTotal flow mode	u 14	output / input work per unit mass k I/kg	HTR	high-temperature recuperator
woutput/ input work, MWxsplit ratioxsplit ratioGreek symbolsLCOE φ boiler heat retention coefficient Δ difference; absolute roughness of tubes, mm Δ difference; absolute roughness of tubes, mm ΔP pressure drop, MPa η efficiency ρ density, kg/m ³ λ thermal conductivity, W/(m·K) ϕ thermal conductivity, W/(m·K) ϕ the ratio of the volume of <i>i</i> -th species to the total flue gas volumeSubscriptsTL, T2, T30environment1, 2, 3state points	W 147	output/ input work per unit mass, kJ/kg	IC	intercooling
Xspin ratio X spin ratio $Greek symbols$ LHV φ boiler heat retention coefficient Δ difference; absolute roughness of tubes, mm Δ difference; absolute roughness of tubes, mm ΔP pressure drop, MPa γ efficiency ρ density, kg/m ³ λ thermal conductivity, W/(m·K) ϕ the ratio of the volume of <i>i</i> -th species to the total flue gas volumeSubscriptsT1, T2, T3 0 environment1, 2, 3state points	VV	anlit ratio	LCOE	levelized cost of electricity
Greek symbolsLTRlow-temperature recuperator φ boiler heat retention coefficientMTRmode-temperature recuperator Δ difference; absolute roughness of tubes, mmOEUoverlap energy utilization ΔP pressure drop, MPaPFMpartial flow mode η efficiencyRCrecompression cycle ρ density, kg/m ³ RHreheating λ thermal conductivity, W/(m·K)RH1, RH2, RH3, RH4reheater 1, reheater 2, reheater 3, reheater 4 ϕ the ratio of the volume of <i>i</i> -th species to the total flue gas volumeSCsimple cycleSubscriptsT1, T2, T3turbine0environmentTCtri-compression cycle1, 2, 3state pointsTFMTotal flow mode	λ	split latto	LHV	lower heating value
φ boiler heat retention coefficientMTRmode-temperature recuperator Δ difference; absolute roughness of tubes, mmOEUoverlap energy utilization ΔP pressure drop, MPaPFMpartial flow mode η efficiencyRCrecompression cycle ρ density, kg/m ³ RHreheating λ thermal conductivity, W/(m·K)RH1, RH2, RH3, RH4reheater 1, reheater 2, reheater 3, reheater 4 ϕ the ratio of the volume of <i>i</i> -th species to the total flue gas volumeSCsimple cycleSubscriptsT1, T2, T3turbine0environmentTCtri-compression cycle1, 2, 3state pointsTFMTotal flow mode	Greek sym	ibols	LTR	low-temperature recuperator
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	φ	boiler heat retention coefficient	MTR	mode-temperature recuperator
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Δ	difference: absolute roughness of tubes, mm	OEU	overlap energy utilization
$ \begin{array}{cccc} & & & & & & & & & \\ \hline \eta & & & & & & & \\ \hline \rho & & & & & & & \\ \hline \rho & & & & & & & \\ \hline \rho & & & & & & & \\ \hline \rho & & & & & & & \\ \hline \lambda & & & & & & & \\ \hline \lambda & & & & & & & \\ \hline \lambda & & & & & & & \\ \hline \lambda & & & & & & & \\ \hline \psi & & & & & & \\ \hline \psi & & & & & & \\ \hline \psi & & & & & & \\ \hline \psi & & & & & & \\ \hline \psi & & & & & & \\ \hline \psi & & & & & & \\ \hline \psi & & & & \\ \hline \psi & & & & & \\ \psi & & & & \\ \hline \psi & & & & \\ \hline \psi & & & & \\ \psi & & & & \\ \psi & & & & \\ \psi & & & &$	ΔP	pressure drop, MPa	PFM	partial flow mode
 φ density, kg/m³ λ thermal conductivity, W/(m·K) φ the ratio of the volume of <i>i</i>-th species to the total flue gas volume Subscripts 0 environment 1, 2, 3 state points RH reheating RH reheating RH reheating RH1, RH2, RH3, RH4 reheater 1, reheater 2, reheater 3, reheater 4 SC simple cycle SH1, SH2 superheater 1, superheater 2 T1, T2, T3 turbine TC tri-compression cycle TFM Total flow mode 	n	efficiency	RC	recompression cycle
 λ thermal conductivity, W/(m·K) φ the ratio of the volume of <i>i</i>-th species to the total flue gas volume Subscripts 0 environment 1, 2, 3 state points 	0	density, kg/m ³	RH	reheating
φ the ratio of the volume of <i>i</i> -th species to the total flue gas volume SC simple cycle Subscripts T1, T2, T3 turbine 0 environment TC tri-compression cycle 1, 2, 3 state points TFM Total flow mode	ρ λ	thermal conductivity W/(m·K)	RH1 RH	2 RH3 RH4 reheater 1 reheater 2 reheater 3 reheater 4
volume SH1, SH2 Supercleater 1, superheater 2 Subscripts T1, T2, T3 turbine 0 environment TC tri-compression cycle 1, 2, 3 state points TFM Total flow mode	ф	the ratio of the volume of <i>i</i> -th species to the total flue gas	SC	simple cycle
SubscriptsT1, T2, T3turbine0environmentTCtri-compression cycle1, 2, 3state pointsTFMTotal flow mode	Ψ	volume	SH1 SH2	superheater 1 superheater 2
Subscripts TC tri-compression cycle 0 environment TFM Total flow mode 1, 2, 3 state points TFM Total flow mode			T1 T2 T	'3 turbine
0 environment TFM Total flow mode	Subscripts		TC 11, 12, 1	tri-compression cycle
1, 2, 3 state points	0	environment	TFM	Total flow mode
	1, 2, 3	state points	11.141	Total now mode

e *i*-th species t power out put ter of tube; outlet of medium temperature flue gas heater peline condary ermal preheater e main compressor the auxiliary compressor nnect-top-bottom cycle uble reheating ternal air preheater ur compression cycle e gas cooler; a method to absorb residual flue gas heat nich a flue gas cooler is arranged in boiler tail flue e gas recirculation gh-temperature recuperator tercooling velized cost of electricity wer heating value w-temperature recuperator ode-temperature recuperator erlap energy utilization rtial flow mode compression cycle heating H3, RH4 reheater 1, reheater 2, reheater 3, reheater 4 nple cycle uperheater 1, superheater 2 turbine -compression cycle tal flow mode auxiliary compressor and a regenerator in the system. Since 1960 s, sCO₂ was not paid much attention, until in 2003, Dostal [10] introduced the sCO₂ cycle to nuclear power application. He noted that the thermal efficiency of sCO₂ cycle is higher than that of water-steam Rankine cycle with vapor temperature higher than 550 °C. Since then, many works have been done for sCO₂ cycles driven by nuclear energy [11-13], solar energy [14-17], waste heat [18-20], nature gas boiler [21,22] and coalfired boiler [23-25]. These works focus on the optimization of the effi-

ciency. Dostal [10] and moisseytsev et al [26,27] thought that RC is a

promising cycle for the fourth generation nuclear power plant. For concentrated-solar power (CSP) plant, air-cooling was discussed for heat

rejection from the cycle to the environment [15,28,29]. The air-cooling

causes higher temperature at the compressor inlet and increases the

compression work. Hence, inter-cooling (IC) was recommended to

efficiency compared with steam-Rankine cycle, by elevating the main vapor temperature due to the weak chemical reaction rate between sCO₂ and metal materials [6].

In this section, we gave a short review on the general analysis of sCO₂ cycle without coupling heat source. Then, we summarized the key issues and solutions for sCO₂ coal-fired power plant. In the end of this section, we highlight the major contribution of the present paper.

The sCO₂ cycle was proposed in 1950 s [7]. Feher [8] investigated the simple recuperated cycle (SC) in 1967, consisting of a turbine, a heater, a recuperator, a compressor and a cooler. He discussed the mismatch between hot side fluid and cold side fluid in the recuperator. This mismatch introduces large temperature difference in the recuperator to lower the thermal efficiency of the system. To overcome this issue, Angelino [9] proposed the recompression cycle (RC), by adding an reduce the compression work [30,31]. Reheating (RH) was suggested to increase the thermal efficiency of the sCO_2 cycle [24,31]. Tricompression sCO_2 cycle (TC) uses three compressors for thermal-power conversion. Moisseytsev et al. [27] pointed out that TC may not have the higher efficiency than RC, due to additional compression work used. Jiang et al. [32] thought that the TC performance may be improved due to the improved temperature match across the two sides of heat exchangers during the heat recovery process. Sun et al. [33] introduced synergetics to construct multi-compressions sCO_2 cycle. They reported that the thermal efficiencies are increased from 47.43% for RC to 49.47% for TC at the main vapor parameters of 550 oC/20 MPa.

Le Moullec [23] introduced the sCO₂ coal-fired power plant in 2013, in which the RC + DRH cycle is integrated with a tower type boiler. The sCO₂ coal-fired power plant was widely studied for a 1000 MWe capacity in China [24,34]. The cycle becomes complicated when coupling with the boiler heat source. Key issues and solutions are summarized as follows.

Flue gas energy absorption over entire temperature range (key issue 1): The distinct characteristic of boiler is that the flue gas energies over a wide range of temperature should be absorbed by the cycle. To achieve this target, flue gas cooler (FGC) was arranged in the tail flue to recover flus gas heat in low temperature range [35-37]. A portion of sCO₂ stream is extracted from a lower temperature point of the cycle, flows through the FGC to absorb flue gas heat, and returns to a higher temperature point of the cycle. Such application maintains the exit flue gas temperature to an acceptable level, keeping higher boiler efficiency, but decreases the cycle efficiency due to more heat added to the cycle [24]. Sun et al [38] proposed a connected-top–bottom sCO₂ cycle (CTB) to absorb flue gas energy over entire temperature range, in which flue gas energies in high, moderate and low temperature zones are absorbed by the top cycle, bottom cycle and air-preheater, respectively. Because the two cycles operate at different temperature zones, efficiencies exist between them. To fill the efficiency gap between the two cycles, Sun et al. [34] further proposed the overlap energy utilization (OEU) principle. An overlap zone in high flue gas temperature zone is set. Flue gas energy in this region is not only absorbed by the top cycle, but also by the bottom cycle. Hence, the overall system efficiency is optimized [34].

Pressure drop penalty effect (key issue 2): The flow rate of sCO_2 cycle is 6 ~ 8 times larger than that of steam Rankine cycle, causing extremely large pressure drop of boiler to decrease system efficiency, which is called the pressure drop penalty effect [24]. Large diameter (~100 mm) tubes of cooling wall decrease pressure drop [23,25], but worsen the heat transfer across the flue gas side and tube side, and introduces challenge in fabricating the cooling wall component [24]. Xu et al. [39] proposed the partial flow mode (PFM) to yield boiler module design, by which pressure drops for sCO_2 cycle can be decreased to a similar level as those of water-steam Rankine cycle.

Overheating of cooling wall (key issue 3): Compared with steam boiler, the inlet temperature of sCO_2 is 200 °C higher than that of water,

and the heat transfer coefficient in tubes is about $5 \text{ kW/m}^2 \text{K}$ [40], much less than that of water. How to prevent the cooling wall from overheating is a key issue of sCO₂ boiler. Xiang et al [41] introduced flue gas recirculation (FGR) to reduce the furnace heat flux to decrease the cooling wall temperatures. Other efforts to suppress the cooling wall temperatures can be found in Refs. [42,43].

In summary, a practical sCO₂ cycle driven by boiler is complicated due to the following factors: (1) flue gas energy should be absorbed over the whole temperature range, (2) the cycle shall eliminate the pressure drop penalty, and (3) the temperatures of cooling walls shall be maintained in an acceptable level to keep the safety operation of the boiler. The solutions to overcome the above issues have been reported in the literature (see Table 1). It is noted that various references focus on the solution of specific issue. For example, Ref. [33] focusses on general sCO₂ cycle analysis without coupling heat source. Refs. [24,39] focus on the discussion of using partial flow mode to decrease pressure drops of boiler. Refs. [23,34,37,38,44] focus on the analysis using FGC, CTB and OEU to absorb flue gas energies over the entire temperature range. Even though the above works are reported, a question which needs to be answered is that what is the efficiency limit and how to reach the efficiency limit? The major contribution (or say the novelty) of the present paper is to propose a roadmap to reach the efficiency limit for sCO₂ coalfired power plant. The roadmap is reflected in two levels. The first level considers general analysis of sCO2 cycle. By comparing the cycle performances of RC, TC, TC + RH, TC + DRH (double reheating), and TC + DRH + IC consecutively, we conclude that TC + DRH + IC is applicable to reach the high efficiency of the system. The second level regards the sCO₂ cycle coupling with the boiler heat source, in which the OEU is used to absorb flue gas energies over entire temperature range, and the partial flow mode is used to decrease the pressure drops of boiler. Besides, cooling wall temperatures are controlled in an acceptable level. Therefore, the proposed roadmap not only reaches the efficiency limit, but also solved the thermal-hydraulic issues that are distinct for sCO2 cycle driven by the boiler heat source.

The present work was divided into general sCO2 cycle analysis (section 2, Figs. 1-4) and practical sCO₂ cycle analysis (section 3 and 4, Figs. 5-16). The proposed roadmap for efficiency improvement is to elevate average heat absorption temperature $(T_{ave, h})$ and lower average heat rejection temperature ($T_{ave, 1}$). Results conclude TC achieves the second largest contribution for efficiency increment, after by the reheating technique. Then TC, DRH and IC are integrated as TC + DRH + IC in the coal fired power plant. After that, practical sCO₂ cycle are conducted. Key issues and corresponding solutions existing in practical sCO₂ power plant are analyzed and reviewed first, and specific implementation process in this paper is performed, then a numerical model is developed, subsequently, a comprehensive 1000 MWe sCO₂ coal-fired power plant conceptual design is finished. At last, the energy-exergyeconomic evaluation analysis is developed to investigate the performance of the system. This work is of great significance to clear the development potential of sCO₂ coal-fired power plant.

Table 1 sCO₂ cycle studies for coal-fired power plant reported in the literature

	General cycle configurations Practical cycle configurations co				rations	comments						
	RC	TC	RH	DRH	IC	FGC	CTB	OEU	PFM	TFM	FGR	
Ref.[33] Ref.[24] Ref.[39] Ref.[38] Ref.[34] Ref.[34] Ref.[44] Ref.[23] Ref.[36] Ref.[37] This	$\checkmark \checkmark \checkmark \lor \checkmark \lor \checkmark \lor \checkmark \lor$		\checkmark \checkmark \checkmark \checkmark	$ \begin{array}{c} \checkmark \\ \checkmark $		$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	\checkmark	\checkmark \checkmark \checkmark	\checkmark \checkmark \checkmark	\checkmark	V	general approach for sCO ₂ cycle practical sCO ₂ cycle analysis focusing on key issue 2 effect of power capacities focusing on key issue 2 sCO ₂ cycle analysis focusing on key issue 1 using CTB sCO ₂ cycle analysis focusing on key issue 1 using OEU sCO ₂ cycle analysis focusing on key issue 1 by comparing OEU and FGC conceptual design of a coal-fired power plant with FGC sCO ₂ cycle analysis focusing on key issue 1 using FGC sCO ₂ cycle analysis focusing on key issue 1 using FGC sCO ₂ cycle analysis focusing on key issue 1 using FGC

Fig. 1. sCO_2 cycle flow chart. (a) Recompression cycle (RC); (b) Tri-compression cycle (TC) which is replotted based on ref. [33], Copyright 2020, Elsevier; (c) Tri-compression plus reheating (TC + RH); (d) Tri-compression plus double reheating (TC + DRH); (e) Tri-compression plus double reheating and inter-cooling cycle (TC + DRH + IC).

2. Efficiency improvement for general sCO₂ cycle

RC cycle is the most classic sCO₂ cycle, widely applied for various heat sources for its higher efficiency, consisting of two compressors (C1 and C2), a turbine (T1), a low temperature recuperator (LTR) and a high temperature recuperator (HTR) (see Fig. 1a). Heat is added to the cycle via heater1 and heat rejection occurs in the cooler. Multi-reheating and multi-intercooling are adopted to raise the efficiency of Brayton cycle in literature, yet there is a lack of general approach. Inspired by the lack, Sun et al.[33] introduces synergetics to construct multi-compressions sCO₂ cycle, which can be thought as a sCO₂ Brayton cycle (A cycle) cooperating with another simple Brayton cycle SC. Such as TC (see Fig. 1b) can be thought as a RC cooperating with a SC. The SC dissipates extra heat to RC, not to environment, which ensures the SC to have an efficiency of 1. The internal heat recycling ensures TC to have an amplifying feedback. TC has two split-flow processes. It should be emphasized that the above conclusion is valid at optimal split ratio of flow, which also means that the two subsystems are cooperative to have no mixing induced exergy destruction. As the same way as TC, fourcompressions sCO₂ cycle (FC) is formed by adding SC to TC, however, the efficiency increment is more obvious from RC to TC than that from TC to FC [33], as well, increasing compression stages not only narrows the heat absorption temperature range of cycle, but also complicates the cycle configuration. Hence, considering a trade-off of cycle efficiency increment and the cycle configuration complexity, TC is considered an

ideal choice for the sCO₂ cycle power system.

RH is called as CO₂ is reheated in a heater before it enters the next turbine. As shown in Fig. 1c and 1d, the sCO₂ cycles are TC + RH and TC + DRH respectively, which TC + RH has two turbines of T1 and T2, TC + DRH for three turbines of T1, T2 and T3. RH is a technique used to increase the expansion work. As well, RH elevates the average heat absorption temperature $T_{ave,h}$ to gain the efficiency increment.

Intercooling (IC) is called as main compressor is divided into two compressors with an additional cooler between the two compressors. Fig. 1c shows TC + DRH + IC. An additional compressor C1' and an intercooler are added between cooler and C1. IC is a technique used to decrease the compressor consumed power represented by reducing the enclosed *P*-*v* area. As the number of stages is increased, the compression process becomes nearly isothermal at the compressor inlet temperature. IC lowers the average heat rejection temperature $T_{\text{ave,l}}$ to gain the efficiency increment.

This section compared the contribution of tri-compression, reheating and intercooling techniques for efficiency improvement. The roadmap of efficiency improvement for general sCO₂ cycle is developed referenced to Carnot cycle. The general cycle analysis is helpful to develop an efficient concept design of practical sCO₂ power plant. Assumptions is necessary to start general cycle analysis, which are summarized as follows.

Pinch temperature difference is 10 °C in recuperators (LTR, MTR and HTR). Pressure drop in recuperators and heaters are neglected as it does

Fig. 2. sCO_2 cycle for efficiency improvement. (a) Efficiency gap between Carnot cycle and RC; (b) Efficiency improved by adding compression, reheating and intercooling.

not influence the major conclusion of general analysis of sCO_2 cycle. There are several mixing points in the cycle. No mixing-induced exergy destruction exists due to the same temperatures and pressures for mixing of different fluid streams. CO_2 physical properties come from NIST software REFPROP, which is widely used for cycle analysis.

Energy conservation and efficiency equations for various components of general sCO_2 cycle are summarized in Table 2. The cycle computation procedure could refer to ref. [24] and [33]. The input parameters include CO_2 temperature and pressure at turbine T1 inlet and main compressor C1 inlet, pinch temperature in recuperators, and isentropic efficiencies of compressors and turbines. Table 3 lists important parameters for general cycle computation.

The efficiency of Carnot heat engine is the highest, of which all heat engines operating between the two thermal energy reservoirs at temperatures $T_{\rm l}$ and $T_{\rm h}$. Carnot efficiency refers to.

$$\eta_{\rm th} = 1 - \frac{T_{\rm h}}{T_{\rm l}} \tag{1}$$

For a thermodynamic cycle with varied temperature of heating and cooling processes, Eq. (1) is modified as.

$$\eta_{\rm th} \approx 1 - \frac{T_{\rm ave,h}}{T_{\rm ave,l}} \tag{2}$$

Where average heat absorption temperature $T_{\text{ave,h}}$ and the average heat rejection temperature $T_{\text{ave,l}}$ are determined by [34].

$$T_{\text{ave,h}} = \frac{\sum_{i=1}^{N} Q_{\text{h,i}}}{\sum_{i=1}^{N} \Delta S_{\text{h,i}}} = \frac{\sum_{i=1}^{N} m_i \left(h_{\text{h,out,i}} - h_{\text{h,in,i}} \right)}{\sum_{i=1}^{N} m_i \Delta s_{\text{h,i}}}$$
(3)

$$T_{\text{ave},i} = \frac{\sum_{i=1}^{M} \mathcal{Q}_{\text{c},i}}{\sum_{i=1}^{M} \Delta S_{\text{c},i}} = \frac{\sum_{i=1}^{M} m_i (h_{\text{c,out},i} - h_{\text{c,in},i})}{\sum_{i=1}^{M} m_i \Delta S_{\text{c},i}}$$
(4)

In Eqs. (3) and (4), Q is the heat transfer load, m is the mass flow rate of cycling fluid, i means the *i*th heating or cooling process, for example, 56 is a heating process (i = 1), 5'6' is heating process (i = 2), 5'''6'' is another heating process (i = 3) (see Fig. 1), N and M are the number of heating and cooling process, respectively, the subscript in and out represent inlet and outlet states for *i*-th process, the subscripts h and c mean heating process and cooling process, respectively.

Fig. 2a shows that 15% efficiency gap is existed between RC and Carnot cycle at the main vapor pressure $P_{\rm mv} = 30$ MPa. Fig. 2b shows the efficiency gap gradually decreases as the cycle configuration optimization path of TC, TC + RH, TC + DRH and TC + DRH + IC. $T_{\rm ave,h}$ and $T_{\rm ave,l}$ are used to explain the reason of efficiency increment.

Fig. 3 shows the *T*-s figure of different cycles at 30 MPa/630 °C turbine T1 inlet conditions, $T_{ave,h}$ and $T_{ave,l}$ are marked using red and blue dotted line respectively. TC has $T_{ave,h}$ of 532.5 °C, which is larger than 509.1 °C of RC. Correspondingly, the cycle efficiency is increased from 51.40% of RC to 52.73% of TC. TC + RH has $T_{ave,h}$ of 578.6 °C, which is larger than 532.5 °C of TC at the same calculation conditions (see Fig. 3c), correspondingly, the cycle efficiency is increased from 52.73% of TC to 55.05% of TC + RH. As the number of reheating stages is increased, $T_{ave,h}$ could be further elevated. Fig. 3d shows TC + DRH could obtain another 0.75% efficiency addition versus TC + RH. As shown in Fig. 3d and 3e, TC + DRH + IC has $T_{ave,l}$ of 39.6 °C, which is smaller than 46.4 °C of TC + DRH at the same calculation conditions, correspondingly, the cycle efficiency is increased from 55.80% of TC + DRH to 56.73% of TC + DRH + IC.

Fig. 4 compares the contribution for efficiency increment of TC, RH, DRH and IC, among which TC achieves the second largest contribution with 1.33% efficiency increment, after the reheating technique with 2.32% efficiency increment. TC and RH is strongly recommended for practical applications. Besides, IC and DRH make the comparable efficiency increment of 0.93% and 0.75%, respectively, which are recommended to further increase the efficiency after RH and TC. In all, considering a trade-off of cycle efficiency improvement and the cycle configuration complexity, though 9% efficiency gap between TC + DRH + IC and Carnot cycle existed (see Fig. 2b), it is not recommended to raise the cycle efficiency by increasing the number of compression, reheating and intercooling stages.

3. The sCO₂ coal-fired power plant

3.1. Key issues coupled with boiler

sCO₂ coal-fired power plant is a complex system. Once sCO₂ cycle is used for coal fired power plant, key issues are summarized as follows [24]. (i) It is difficult to recover the flue gas heat over a very wide temperature range of 1500–120 °C. (ii) Ultra-large pressure drop of sCO₂ boiler occurs to suppress system efficiency with conventional boiler design. (iii) Significantly higher inlet temperature of sCO₂ boiler leads to the cooling wall over temperature.

3.1.1. Flue gas energy absorption over entire temperature range

In the paper, OEU was adopted to recover flue gas energy over entire temperature range. The specific implementation process of OEU is illustrated by the 1000 MW sCO₂ coal-fired power plant, which both top cycle and bottom cycle apply TC + DRH + IC (see Fig. 5a and 5b), but an external air preheater (EAP) recycles extra heat of bottom cycle to the boiler. Fig. 5c shows the combine cycle after performing components sharing of top and bottom cycle. The components sharing technique is

Fig. 3. Average absorption temperature $T_{ave,h}$ and average release temperature $T_{ave,l}$ of different sCO₂ cycle. (a) RC; (b) TC; (c) TC + RH; (d) TC + DRH; (e) TC + DRH + IC.

applied to simplify the system layout based on the similar CO₂ pressures and temperatures in some components of the two cycles, For example, T_6 and $T_{5'}$ across T1 in top cycle equal to T_{6b} and $T_{5'b}$ across T1b in bottom cycle. Hence, T1b in bottom cycle can be combined into T1 in top cycle. $T_{fg,i}$, $T_{fg,o}$ and $T_{fg,ex}$ are called the interface temperatures among the three regions of flue gas energies. Heaters 1, 2, 3 and 4b are responsible for the extraction of high temperature flue gas energy. Heater 4a', heater 4a'' and AP2 account for the extraction of moderate temperature flue gas energy. Low temperature flue gas energy is absorbed by AP1 only. As shown in Fig. 5c and 6d, two overlap zones are set in high and moderate temperature region, respectively. Overlap zone 1 covers the flue gas temperature range from $T_{fg,i} + \delta_1$ to $T_{fg,i}$, where δ_1 is called the deviation temperature. Flue gas energy in this subzone is not only absorbed by top cycle, but also by bottom cycle, represented by heater 4b and heater 3. The overlap energy utilization ensures no efficiency gap between top cycle and bottom cycle. Fig. 5e shows the *T*-s curve of top cycle and bottom cycle. Overlap zone 2 covers the flue gas temperature range from $T_{\rm fg,i}$ to $T_{\rm fg,i} + \delta_2$, flue gas energy in this subzone absorbed by heater 4a' and AP2 with the parallel arrangement, which increases the capability to extract moderate/low temperature flue gas energy, decreasing outlet flue gas temperature and raising boiler efficiency [34].

3.1.2. sCO₂ boiler module design

The cycling mass flow rate *m* is scaled as $m = Q/\Delta h$, where *Q* is the

Fig. 4. Efficiency improvement of multi-compression, reheating and intercooling at the main vapor parameters of 30 MPa / 630 $^\circ$ C.

rate of heat absorption and Δh is the specific enthalpy difference of working fluid entering and leaving a boiler. Because CO2 has much smaller Δh than water-steam under similar condition, *m* is significantly large, causing extremely large boiler pressure drop to decrease system efficiency, which is called the pressure drop penalty effect. To overcome this issue, many researchers considered using larger tube diameters to reduce pressure drop, but worsen the heat transfer across the flue gas side and tube side, and introduces challenge in fabricating the cooling wall component. Xu et al [24] proposed the PFM to yield boiler module design. Fig. 6 exhibits the two flow modes. Total flow mode (TFM) is a series connection mode. For PFM, The total flow rate is divided into two parallel lines, each having half tube length L/2 and half flow rate m/2, reducing pressure drop to 1/8 of that with the TFM. The total CO₂ flow rate, total tube length, and total heat absorption of two modes remain constant. Fig. 5c shows the sCO₂ cycle driven by a boiler with Heaters 1, 2, 3, 4a and 4b. PFM is applied to yield boiler module design shown in Fig. 6. Heater1 in Fig. 5c, as the main heating process, is decoupled into two branches in parallel, each branch accounts for half flow rate, in which Part 1 and SH1 are connected with each other as one branch, Part 2 and SH2 as the other branch. Similarly, Heater 2, as the reheating process, is decoupled into (Part 3 + RH1) and (Part 4 + RH2) two parallels. Heater 3, as double reheating process, is decoupled into RH3 and RH4 in parallel connection.

3.1.3. Flue gas recirculation

For coal-fired boiler, when CO_2 is used instead of water, significant change happens on the heat transfer performance. Such as, the temperature of CO_2 entering the boiler furnace increases by 100–200 °C [41] and the heat transfer coefficient of sCO_2 is only about 1/3 of that of water [41], which results in over-temperature of heating exchanger. Flue gas recirculation, extracting part of low temperature flue gas from tail flue to the furnace, is proposed to enhance the heat transfer and reduce the heat flux density of the furnace, which could relieve the heat transfer deterioration. Meanwhile, flue gas recirculation could also reduce the generation of thermal NO_x and inhibit coke formation. The technique is adopted in this paper. Fig. 7 shows specific implementation, which a portion of low temperature flue gas is recirculated from the inlet of low temperature flue gas region, correspondingly inlet of AP1 in Fig. 5c, and send it to the furnace.

3.2. Numerical model

Fig. 9 shows the computation scheme, consisting of two subroutines. Once initial parameters are given (see Table 4), pressure drops in various heaters of boiler are assumed, then the thermodynamic cycle subroutine is called. Parameters of state points, components heat load/work, coal consumption rate and thermal efficiency are obtained after thermodynamic cycle subroutine finished. And then, distribute heat load of heater components in boiler to continue sCO_2 boiler subroutine. Pressure drop in heaters are obtained and calculate residual value of pressure drops in Heaters 1, 2and 3. The iteration computation is stopped until the residual value is smaller than a setting value. At last, the energy, exergy and economic evaluation is further conducted to analyze the system comprehensively.

The coal-fired power plant is a very complicated system. All the calculation schemes are reflected as the source code built by the present authors using the Matlab software platform. The proposed system adopts TC + DRH + IC cycle configuration. Overlap energy utilization is utilized to recover the flue gas heat over the whole temperature range. The proposed cycle also integrates the module boiler design to suppress the pressure drop penalty effect, and the flue gas recirculation to keep the heater surface temperature in an accepted level. Following assumptions are made: (i) steady system operation; (ii) CO_2 physical properties come from NIST software REFPROP, which is widely used for cycle analysis. (iii) no mixing-induced exergy destruction exists due to the same temperatures and pressures for mixing of different fluid streams. (iv) heat loss for boiler and pipe heat loss is considered, but neglected for other components.

3.2.1. Computation of sCO₂ cycle

Thermodynamic parameters at various state points are calculated as Table 5. Fig. A1 in appendix shows the computation scheme of cycle thermodynamic calculation. TC has two split flow processes as the cycle consists of three compressors and three regenerators. Partial flow rate flows through each compressor are $1-x_{C2}-x_{C3}$ in C1, x_{C2} in C2 and x_{C3} in C3. It should be emphasized that TC shows the best performance only at optimal split ratio of flow, the two subsystems are cooperative to have no mixing induced exergy destruction. The optimal split ratio are calculated as the following set of equations.

$$\begin{cases} x_{C1} = 1 - x_{C2} - x_{C3} \\ (1 - x_{C2} - x_{C3})(h_3 - h_2) = (1 - x_{C3})(h_9 - h_{10}) \\ (1 - x_{C3})(h_4 - h_3) = (h_8 - h_9) \end{cases}$$
(5)

The cycle computation needs to deal with overlap energy utilization. The flue gas energy is divided into high, moderate and low temperature region by two junction temperatures of flue gas, $T_{\rm fg,i}$ and $T_{\rm fg,o}$. Specified by the pinch temperature difference, $T_{\rm fg,i}$ and $T_{\rm fg,o}$ are related to the CO₂ temperatures in tube side with $T_{\rm fg,i} \ge T_{\rm CO2} + 40$ and $T_{\rm fg,o} \ge T_{\rm CO2} + 20$ at corresponding points. Since part of recirculating flue gas with the ratio of $x_{\rm rec}$ is extracted to send to the furnace, the flue gas flow rate flowing through high and moderate temperature region is scaled as $1+x_{\rm rec}$ ($x_{\rm rec}=27\%$ in the paper). Thermal load conservation of three regions are.

$$\begin{cases} \varphi B_{cal}(1+x_{rec})(h_{flame}-h_{fg,i}) = Q_{heater1} + Q_{heater2} + Q_{heater3} + Q_{heater4b} \\ \varphi B_{cal}(1+x_{rec})(h_{fg,i}-h_{fg,0}) = Q_{heater4a} + Q_{AP2} \\ \varphi B_{cal}(h_{fg,i}-h_{fg,ex}) = Q_{AP1} \end{cases}$$
(6)

where *h* is the flue gas enthalpy, φ is the boiler heat retention coefficient, $\varphi = 1-q_5/(100\eta_{\text{boiler}} + q_5)$, η_{boiler} is the boiler efficiency calculated by the anti-balance method and q_5 is a component of heat loss due to heat dissipation to environment, which can be determined by Ref. [45]. B_{cal} is coal consumption rate except unburned, called calculated coal consumption.

$$B_{\text{cal}} = B\left(1 - \frac{q_4}{100}\right)B = \frac{q_{\text{total}}m_{\text{CO}_2}}{Q_{\text{LHV}}\eta_{\text{boiler}}}$$
(7)

where *B* is coal consumption rate, q_4 is a component of heat loss due to unburned carbon, q_{total} is total heat absorption per unit mass flow rate of CO₂, m_{CO_2} is the total mass flow rate of CO₂, Q_{LHV} is the low heating value of design coal per unit mass (see Table 6).

Heater 4a is decoupled into heater 4a' and heater 4a'', arranged in the tail flue, to absorb the moderate flue gas energy. Q_{heater4a} is.

Fig. 5. sCO₂ cycle based on overlap energy utilization. (a) top cycle; (b) bottom cycle; (c) combined cycle after components sharing; (d) overlap energy utilization, replotted based on Ref. [39]; (e) *T*-s curve of top cycle and bottom cycle.

$$Q_{\text{heater4a}} = x_{\text{heater 4}} m_{\text{CO2}} (h_6 - h_4) \tag{8}$$

Thermal efficiency η_{th} of the cycle is calculated as:

$$\eta_{\rm th} = \frac{w_{\rm net}}{q_{\rm total}} \tag{9}$$

$$w_{\text{net}} = (w_{\text{T1}} + w_{\text{T2}} + w_{\text{T3}}) - (w_{\text{C1}'} + w_{\text{C1}} + w_{\text{C2}} + w_{\text{C3}})$$
(10)

$$q_{\text{total}} = (1 - x_{\text{heater 4}})(h_6 - h_5) + x_{\text{heater 4}}(h_6 - h_4) + (h_{6'} - h_{5'}) + (h_{6''} - h_{5''}) - x_{\text{EAP}}(h_7 - h_8)$$
(11)

$$m_{\rm CO_2} = \frac{W_{\rm net}}{w_{\rm net}} \tag{12}$$

where w_{net} is net power per unit mass flow rate of CO₂, x_{Heater4} is the ratio of flow rate in heater4a or heater4b to the total flow rate, x_{EAP} is the ratio of flow rate in EAP to the total flow rate, W_{net} is power capacity (W_{net} =1000 MW in the paper).

3.2.2. Computation of sCO_2 boiler

The proposed cycle driven by a boiler with heaters 1, 2, 3, 4a and 4b, in which heaters 1, 2 and 3 are decoupled into several heater components (see Fig. 6). The energy relationship are:

$$\begin{cases} Q_{\text{heater1}} = Q_{\text{part1}} + Q_{\text{part2}} + Q_{\text{SH1}} + Q_{\text{SH2}} \\ Q_{\text{heater2}} = Q_{\text{part3}} + Q_{\text{part4}} + Q_{\text{RH1}} + Q_{\text{RH2}} \\ Q_{\text{heater3}} = Q_{\text{RH3}} + Q_{\text{RH4}} \end{cases}$$
(13)

Fig. 6. Two flow modes. (a) total flow mode; (b) partial flow mode. This figure is cited from Ref. [39]. Copyright 2020, Elsevier).

Fig. 7. sCO₂ boiler module design. This figure is replotted and modified from Ref. [40.

Pressure drops in boiler tubes consists of components of friction (ΔP_f) , gravity (ΔP_g) and acceleration (ΔP_a) .

$$\Delta P = \Delta P_{\rm f} + \Delta P_{\rm g} + \Delta P_{\rm a} \tag{14}$$

$$\Delta P_{\rm f} = \int_{z_{\rm j-1}}^{z_{\rm j}} \frac{f}{d_{\rm i}} \frac{G^2}{2\rho} dz, \quad \Delta P_{\rm g} = \int_{z_{\rm j-1}}^{z_{\rm j}} \rho g dz, \quad \Delta P_{\rm a} = G^2 \left(\frac{1}{\rho_{\rm o}} - \frac{1}{\rho_{\rm i}}\right) \tag{15}$$

where G and ρ are the mass flux and density, respectively, *f* is the friction coefficient [46].

$$f = \frac{1}{3.24 \lg^2 \left[\left(\frac{\Delta/d_i}{3.7} \right)^{1.1} + \frac{6.9}{Re} \right]}$$
(16)

where Δ is the absolute wall roughness, $\Delta = 0.012$ mm for stainless-steel tubes [47].

The boiler efficiency η_{boiler} is calculated by the anti-balance method [48]:

$$\eta_{\text{boiler}} = 1 - (q_2 + q_3 + q_4 + q_5 + q_6) \tag{17}$$

where q_2,q_3,q_4,q_5 and q_6 are the ratio of heat losses due to exhaust gas, unburned gases, unburned carbon, heat dissipation to environment and physical heat loss of ash to the input energy of coal. q_3,q_4,q_5 and q_6 depend on boiler type and coal type (see Table 7 for specific values). q_2 is the biggest among the five ratios of boiler heat losses, calculated as: [45].

$$q_2 = \frac{Q_2}{Q_r}, \quad Q_2 = B_{\rm cal} \left(h_{\rm exg} - h_{\rm ca} \right) \left(1 - \frac{q_4}{100} \right) \tag{18}$$

where Q_2 is the heat loss due to exhaust gas, h_{exg} is the exhaust gas enthalpy per unit mass coal, h_{ca} is the air enthalpy per unit mass coal at environment temperature, Q_r is the energy brought into boiler by coal, hot air and recirculating flue gas.

$$Q_r = B_{\rm cal} \left(Q_{\rm LHV} + h_{\rm sec,ha} + x_{\rm rec} h_{\rm fg,o} \right) \tag{19}$$

where $h_{\rm sec,ha}$ is the secondary air flow enthalpy after heated by AP1, EAP

Fig. 8. Flue gas recirculation.

and AP2.

Fig. A2 in appendix shows the computation scheme of sCO_2 boiler and its thermal-hydraulic characteristic. The iteration calculation of furnace outlet temperature T_{fl} is performed to obtain boiler geometry parameters. Heating components of sCO_2 boiler includes both radiation modules and convective modules. The design methods are similar with water-steam boiler cited from Ref [49].

3.2.3. Exergy analysis

The input exergy of system equals to the chemical exergy of coal [44]:

$$E_{\text{coal}} = BQ_{\text{LHV}} \left(1.0064 + 0.1519 \frac{H_{\text{ar}}}{C_{\text{ar}}} + 0.0616 \frac{O_{\text{ar}}}{C_{\text{ar}}} + 0.0429 \frac{N_{\text{ar}}}{C_{\text{ar}}} \right)$$
(20)

 C_{ar} , H_{ar} , O_{ar} and N_{ar} are the ratios of C (carbon), H (hydrogen), O (oxygen) and N (nitrogen) on the received basis of designed coal, respectively (see Table 6).

Specific exergy per unit mass flow rate is calculated as $e = h - T_0 s$, where T_0 is the environment temperature, h and s are the enthalpy and entropy per unit mass flow rate. Exergy losses per unit mass flow rate in various components are shown in Table 5. The exergy loss in component j is $I_j = m_j i_j$ and the exergy balance equation can be expressed as.

$$\sum E_{\text{in, j}} = \sum E_{\text{out, j}} + W_j + I_j$$
(21)

where the expression on the left side of the equal sign is input exergy of component *j*, the output exergy is on the right side, consisting output exergy of CO₂, output work W_j and exergy loss I_j .

Boiler is a complicated system, considering as a whole component, boiler exergy loss I_{boiler} is.

$$I_{\text{boiler}} = E_{\text{coal}} - E_{\text{out,boiler}}$$
(22)

Fig. 9. Calculation scheme for the sCO₂ system.

Fig. 10. sCO₂ power plant (TC + DRH + IC cycle, partial flow strategy to suppress pressure drops in various heaters, overlap energy utilization to absorb the whole range flue gas energy, main vapor parameters are 630 °C/35 MPa, 1000 MWe net power output, power efficiency $\eta_e = 51.03\%$).

Fig. 11. Distributions of flue gas temperature and thermal loads.

$$E_{\text{out,boiler}} = m_{\text{CO2}}[(1 - x_{\text{Heater 4}})(e_6 - e_5) + x_{\text{Heater 4}}(e_6 - e_4) + (e_{6'} - e_{5'}) + (e_{6''} - e_{5''}) - x_{\text{EAP}}(e_7 - e_8)]$$
(23)

Considering the energy transfer and conversion in the boiler, I_{boiler} is.

$$I_{\text{boiler}} = I_{\text{com}} + I_{\text{heaters}} + I_{\text{mix}} + I_{\text{others}}$$
(24)

where $I_{\rm com}$ is exergy loss caused by combustion, $I_{\rm heaters}$ is exergy loss of heater components, $I_{\rm mix}$ is exergy loss in flue gas mixing process, $I_{\rm others}$ is the exergy loss caused by boiler heat losses.

Flue gas exergy e_{fg} is calculated as follows [44]:

$$e_{\rm fg} = h_{\rm fg} - T_0 s_{\rm fg} h_{\rm fg} = \sum_{\rm i\,=\,1}^{\rm M} \phi_{\rm i} h_{\rm i} + h_{\rm fh} s_{\rm fg} = \sum_{\rm i\,=\,1}^{\rm M} \phi_{\rm i} s_{\rm i} + s_{\rm fh}$$
(25)

where $s_{\rm fg}$ is the entropy of flue gas per unit mass of coal, $h_{\rm fh}$ and $s_{\rm fh}$ are enthalpy and entropy of fly ash after unit mass coal fired, M are the species of flue gas, including CO₂, SO₂, N₂, O₂, H₂O steam, $\phi_{\rm i}$ is the ratio of the volume of *i*-th species to the total flue gas volume.

Exergy efficiency η_{ex} of the system is:

$$\eta_{\rm ex} = \frac{W_{\rm net}}{E_{\rm coal}} \tag{26}$$

3.2.4. Economic indicators

In order to assess economic aspects of the system, two economic indicators have been considered, coal consumption for power supply (b_g) and Levelized cost of electricity (LCOE).

The component cost model is presented as [50]:

$$C_k = a_k S P^{b_k} \times f_{\mathrm{T},k} \tag{27}$$

where *k* represents the component, C_k is the component cost, a_k and b_k are fit coefficients, *SP* is the scaling parameter, representing thermal heat duty for heaters and recuperators and shift power for compressors and turbines, $f_{T,k}$ is a temperature correction factor. Detailed cost correlation of components are shown in Table 8.

Besides, materials and direct labor costs needed for installation of components should be added to the equipment cost, $c_{ins,k}$ is the ratio of *k*th component materials and labor cost to component cost C_k , the values are evaluated by NERL (see Table 8) [50]. The total investment cost of components C_{total} is calculated as.

$$C_{\text{total}} = \sum_{k=1}^{NC} (1 + c_{\text{ins},k}) C_k$$
(28)

 b_g refers to the average standard coal consumption per kilowatt hour, which can be calculated by the following formula [51].

Fig. 12. Sankey diagram depicting the energy flowing through the coal-fired sCO₂ power plant (The width represents the amount of energy, the length does not have physical meaning).

Fig. 13. Thermal load distribution of various components for the system.

$$b_{\rm g} = \frac{B \times (1 - r_{\rm heating})}{E_{\rm gen} \times (1 - r_{\rm house})}$$
(29)

where r_{heating} is the heating ratio, r_{house} is auxiliary equipment electric consumption ratio, E_{gen} is the electricity generated.

LCOE refers to the ratio of the total cost to the total power output of the plant during its lifetime [52]. The total cost contains total investment cost of components C_{total} , the operation and maintenance cost C_{OM} , and fuel cost C_{f} . *CRF* is the investment recovery factor related to the discounted rate r and the lifespan of equipment NY. Plant utilization

factor u is 0.85 (see Table 9). The parameter *OM* denotes the operation and maintenance costs per kW·h and the coefficient *er* is the escalation rate over the years. [53].

$$LCOE = \frac{CRF \times C_{\text{total}} + C_{\text{OM}} + C_{\text{f}}}{8760uW_{\text{net}} \times NY}$$
(30)

$$CRF = \frac{r(1+r)^{NY}}{(1+r)^{NY} - 1}$$
(31)

flue gas

Fig. 14. Sankey diagram depicting the exergy flowing through the coal-fired sCO₂ power plant (The width represents the amount of exergy, the length does not have physical meaning).

700

600

500 Iluc Sas heater4a" AP2 heater4a' $T^{(0)}(C)$ 400 AP1 300 $T_{\rm fg,ex}$ =120 °C ąj 200 heater 4a' & AP1 AP2 heater 4a' 100 118.8 MW 100.6 MW 302.3 MW 0 0 100 200 300 400 500 600 $\Delta H(MW)$ Fig. 16. T- ΔH curve for heat exchangers (heater 4a' and heater 4a'') and air

Fig. 16. $T \cdot \Delta H$ curve for heat exchangers (heater 4a' and heater 4a'') and air preheaters (AP1 and AP2) operating in moderate and low temperature flue gas region.

$$C_{\rm OM} = \sum_{m=1}^{NY} \frac{1000W_{\rm net}(OM(1+er)^m)}{(1+r)^m}$$
(32)

$$C_{\rm f} = 8.76 b_{\rm g} W_{\rm net} u \times NY \tag{33}$$

4. Results and discussion

4.1. The 1000 MW sCO₂ coal-fired power plant with the limit efficiency

Fig. 10 shows the 1000 MW sCO_2 coal fired power plant which reached the limit efficiency. The inlet and outlet temperature/pressure of each component is marked, and the thermal load/power is given. Anthracite coal was used, whose properties parameters are shown in

Fig. 15. Exergy destruction distributions in system components (a) and detail exergy destruction in boiler (b).

Table 2

Energy conservation and efficiency equations for various components of sCO₂ cycle [24].

Model	Energy relations	Subscripts explanation
turbine	$\eta_{t,s} = \frac{h_{t,in} - h_{t,out}}{h_{t,in} - h_{t,out,s}}, W_t =$	t, in, out, s mean turbine, turbine inlet, turbine outlet, isentropic
heater	$egin{aligned} & m_{ ext{t}}\left(n_{ ext{t,in}}-n_{ ext{t,out}} ight) \ & Q_{ ext{h}} &= m_{ ext{h}}\left(h_{ ext{h,out}}-h_{ ext{h,in}} ight) \end{aligned}$	h, in, out mean heater, heater inlet, heater outlet.
recuperator	$egin{aligned} m_{ m h} \left(h_{ m h,in} - h_{ m h,out} ight) \ = \ m_{ m c} \left(h_{ m c,out} - h_{ m c,in} ight) \end{aligned}$	h, c, in, out mean hot side, cold side, inlet, outlet.
cooler	$Q_{ m c} = m_{ m c} \left(h_{ m c,in} - h_{ m c,out} ight)$	c, in, out mean cooler, cooler inlet, cooler outlet.
compressor	$\eta_{\mathrm{c,s}} = rac{h_{\mathrm{c,out,s}} - h_{\mathrm{c,in}}}{h_{\mathrm{c,out}} - h_{\mathrm{c,in}}},$	c, in, out, s mean compressor, compressor inlet, compressor
	$W_{ m c} = m_{ m c} \left(h_{ m c,out} - h_{ m c,in} ight)$	outlet, isentropic.
thermal efficiency	$\eta_{\mathrm{th}} = rac{W_{\mathrm{t}} - \sum W_{\mathrm{c}}}{Q_{\mathrm{h}}}$	th, t, c, h mean thermal, turbine, compressor, heater.

Table 3

Parameters for generalized sCO₂ cycle calculation.

Parameters	Values
Inlet temperature of compressor Inlet pressure of compressor Inlet temperature of turbine T_{mv} Inlet pressure of turbine P_{mv} Isentropic efficiency of turbine [33] Isentropic efficiency of compressors [33] Pressure drop in regenerators and heaters [33]	32 °C 7.6 MPa 630 °C 30 MPa 93% 89% 0 MPa
Pinch temperature difference of regenerators	10 °C

Table 4

Parameters for the 1000 MW sCO_2 coal-fired power plant concept design [23,35,39,52].

Cycle type Indirect boiler type Pulverized coal boiler
boiler type Pulverized coal boiler
boiler
Not power $(W_{\rm e})$ 1000 MWe
iver power (w _{net}) 1000 MWe
Inlet temperature of compressor C1 and C1' $(T_{1'}, T_1)$ 32 °C
Inlet pressure of compressor C1' (P_1) 7.6 MPa
Inlet temperature of turbine T1, T2 and T3 (T_6 , $T_{6'}$ and $T_{6''}$) 630 °C
Inlet pressure of turbine T1 (P ₁) 35 MPa
Isentropic efficiency of turbine T1 ($\eta_{T1,s}$) 91.58%
Isentropic efficiency of turbine T2 ($\eta_{T2,s}$) 91.86%
Isentropic efficiency of turbine T3 ($\eta_{T3,s}$) 92.39%
Isentropic efficiency of compressors ($\eta_{C,s}$) 89%
Pressure drop in regenerators (ΔP) 0.1 MPa
Pinch temperature difference in LTR and MTR (ΔT) 8 °C
Primary air temperature entering air preheater 31 °C
Primary air temperature leaving air preheater 320 °C
Ratio of primary air flow rate to the total air flow rate 19%
Secondary air temperature entering air preheater 23 °C
Ratio of secondary air flow rate to the total air flow rate 81%
Environment temperature (T_0) 20 °C
Excess air coefficient (α) 1.2
Ratio of low temperature flue gas recirculation (x_{rec}) 27%
Pinch temperature difference between flue gas and CO_2 at 40 $^{\circ}C$
point 5b (ΔT_{5b})
Pinch temperature difference between flue gas and CO_2 at 20 °C
point 4b (ΔT_{4b})

Table 6. The system adopted TC + DRH + IC cycle configuration which is recommended by general cycle analysis in section 2. TC is presented by LTR, MTR, C2 and C3, IC is presented by cooler 2 arranged between C1' and C1, DRH is presented by T1, T2, T3 and heater modules between three turbines. Besides, overlap energy utilization is utilized to absorb the flue gas energy over the whole temperature range, which is presented by heater4a, heater4b, AP1, AP2 and EAP. The proposed cycle

Table 5

Energy and exergy equations for compressors, turbines and heat exchangers of sCO_2 cycle [39,44].

Components	Energy and exergy equations
	$\begin{split} \eta_{\rm C,s} &= \frac{h_{\rm 2's} - h_1}{h_{\rm 2'} - h_1}, {\bf w}_{\rm C1'} &= (1 - {\bf x}_{\rm C2} - {\bf x}_{\rm C3})(h_{\rm 2'} - h_1); \\ i_{\rm C1'} &= {\bf w}_{\rm C1'} - (1 - {\bf x}_{\rm C2} - {\bf x}_{\rm C3})(e_{\rm 2'} - e_1) \end{split}$
	$\begin{split} \eta_{\rm C,s} &= \frac{h_{\rm 2s} - h_{\rm 1'}}{h_2 - h_{\rm 1'}} w_{\rm C1} = (1 - x_{\rm C2} - x_{\rm C3})(h_2 - h_{\rm 1'});\\ i_{\rm C1} &= w_{\rm C1} - (1 - x_{\rm C2} - x_{\rm C3})(e_2 - e_{\rm 1'}) \end{split}$
	$\eta_{\rm C,s} = \frac{h_{10s} - h_3}{h_{10} - h_3}, w_{\rm C2} = x_{\rm C2}(h_{10} - h_3), i_{\rm C2} = w_{\rm C2} - x_{\rm C2}(e_{10} - e_3)$
9 C3	$\eta_{\rm C,s} = \frac{h_{\rm 9s} - h_4}{h_9 - h_4}, w_{\rm C3} = x_{\rm C3}(h_9 - h_4), i_{\rm C3} = w_{\rm C3} - x_{\rm C3}(e_9 - e_4)$
5 T1	$\eta_{\text{T1,s}} = \frac{h_5 - h_6}{h_5 - h_{6s}}, w_{\text{T1}} = h_5 - h_6; i_{\text{T1}} = e_5 - e_6 - w_{\text{T1}}$
5^{\prime} T2 6^{\prime}	$\begin{array}{lll} P_{6'} &= \sqrt[3]{P_2^2 P_7}, \eta_{\text{T2},s} &= \frac{h_{5'} - h_{6'}}{h_{5'} - h_{6's}}, w_{\text{T2}} &= h_{5'} - h_{6'}; i_{\text{T2}} &= e_{5'} - e_{6'} - w_{\text{T2}} \end{array}$
5'', T3 6'''	$P_{6''} = \sqrt[3]{P_5 P_7^2}, \ \eta_{T3,s} = \frac{h_{5^-} - h_{6^-}}{h_{5^-} - h_{6^-s}}, w_{T3} = h_{5''} - h_{6''}; i_{T3} = e_{5''} - e_{6''} - w_{T3}$
$\frac{2}{10} \frac{3}{LTR} \frac{3}{9}$	$\begin{array}{l} T_{10} = T_2 + \Delta T_{\rm LTR,} (1 - {\bf x}_{\rm C2} - {\bf x}_{\rm C3}) (h_3 - h_2) = \\ (1 - {\bf x}_{\rm C3}) (h_9 - h_{10}); i_{\rm LTR} = \\ (1 - {\bf x}_{\rm C3}) (e_9 - e_{10}) - (1 - {\bf x}_{\rm C2} - {\bf x}_{\rm C3}) (e_3 - e_2) \end{array}$
$\frac{3}{9}$ MTR $\frac{4}{8}$	$T_9 = T_3 + \Delta T_{\text{MTR}} \mathbf{x}_{\text{C3}} = 1 - \frac{h_8 - h_9}{h_4 - h_3} \mathbf{i}_{\text{MTR}} = (e_8 - e_9) - (1 - \mathbf{x}_{\text{C3}})(e_4 - e_3)$
4 8 HTR 7	$\begin{split} T_8 &= T_4 + \Delta T_{\rm HTR}, (1-x_{\rm EAP})(h_7-h_8) = (1-x_{\rm Heater4})(h_5-h_4); \\ t_{\rm HTR} &= (1-x_{\rm EAP})(e_7-e_8) - (1-x_{\rm Heater4})(e_5-e_4) \end{split}$
$10 \longrightarrow 1$ Cooler	$i_{\text{Cooler}} = (1 - \mathbf{x}_{\text{C2}} - \mathbf{x}_{\text{C3}})(e_{10} - e_{1})$
2° 1°	$P_{2'} = \sqrt{P_1 P_2}, i_{\text{Intercooler}} = (1 - x_{\text{C2}} - x_{\text{C3}})(e_{2'} - e_{1'})$

also integrates the module boiler design to suppress the pressure drop penalty effect, heaters 1-3 are subdivided into ten modules. Pressure drops of three heaters are 0.6 MPa, 0.3 MPa and 0.14 MPa, respectively, which is even smaller than supercritical water-steam boiler [49]. The flue gas recirculation is used to keep the heater surface temperature in an accepted level, here, recirculating part of flue gas with the ratio of 27% at the inlet position of the AP1 and sending it to the furnace. The total air flow rate after leaving AP1 is decoupled into two streams. The primary stream, accounting for 19%, directly returns to the furnace for combustion. The secondary stream, accounting for 81%, is continued to be heated by a portion of CO₂ in EAP and a portion of moderate flue gas energy in AP2 consecutively and finally returns to furnace for combustion. AP2 and heater 4a" are arranged in parallel to further extract moderate/low temperature flue gas energy. At the main vapor parameters of 630 °C/35 MPa, the thermal efficiency η_{th} is up to 54.43%. As the formula (34), Power efficiency η_e is the product of thermal efficiency $\eta_{\rm th}$, boiler efficiency $\eta_{\rm b}$ and pipeline efficiency $\eta_{\rm p}$, where $\eta_{\rm boiler}$ is 94.71% calculated by anti-method and η_p is a setting value to be 99% [24]. Finally, η_e is 51.03%, which is larger than 48.12% of the advanced supercritical water-steam power plant [5]. Such efficiency improvement

Fig. A1. Computation scheme of thermodynamic cycle.

Properties	of the	e designed	coal	[44]	

Car	$H_{\rm ar}$	Oar	Nar	$S_{\rm ar}$	A _{ar}	$M_{\rm ar}$	$V_{\rm daf}$	$Q_{\rm LHV}$
61.70	3.67	8.56	1.12	0.60	8.80	15.55	34.73	23,442

Table 7

Components of boiler heat loss.						
q_4	q_3	q_2	q_5	q_6	$\eta_{ m boiler}$	
0.3	0	4.44	0.5	0.05	94.71	

C (carbon), H (hydrogen), O (oxygen), N (nitrogen), S (sulfur), A (ash), M (moisture), V (volatile).Subscripts ar, d, af mean as received, dry and ash free, $C_{\rm ar} + H_{\rm ar} + O_{\rm ar} + N_{\rm ar} + S_{\rm ar} + A_{\rm ar} + M_{\rm ar} = 100.$

Fig. A2. Computation scheme of boiler design and thermal-hydraulic characteristics.

Table 8		
Economic model of components	[50]	

1			
Components	Economic model	Installation Cost P	ercentage (%)
		Material	labor
Boiler	$C_{\text{boiler}} = 820800 Q^{0.7327} \times f_{\text{boiler}} f_{\text{boiler}} = \begin{cases} 1 , T_{\text{max}} < 550^{\circ} C \\ 1 + 5.4 \times 10^{-5} (T_{\text{max}} - 550^{\circ} C)^{2}, T_{\text{max}} \geqslant 550^{\circ} C \end{cases}$	50	
Recuperators	$C_{\text{recup}} = 49.45UA^{0.7544} \times f_{\text{recup}} f_{\text{recup}} = \begin{cases} 1 , T_{\text{max}} < 550^{\circ}C \\ 1 + 0.02141(T_{\text{max}} - 550^{\circ}C)^{2}, T_{\text{max}} \ge 550^{\circ}C \end{cases}$	2	3
Coolers	$C_{\text{cooler}} = 32.88UA^{0.75}$	8	12
Turbines	$C_{\rm tur} = 182600 W_{\rm tur}^{0.5561} \times f_{\rm tur} f_{\rm tur} = \begin{cases} 1 , T_{\rm max} < 550^{\circ}C \\ 1 + 1.106 \times 10^{-4} (T_{\rm max} - 550^{\circ}C)^2, T_{\rm max} \ge 550^{\circ}C \end{cases}$	8	12
Compressors	$C_{\rm com} = 1230000 W_{\rm com}^{0.3992}$	8	12
Generators	$C_{\rm gen} = 108900 W_{\rm e}^{0.5463}$	8	12

Z. Wang et al.

Table 9

Assumed values for economic analysis.

Parameter	values
O&M operations OM (\$/kWe)	30.00
O&M escalation rate er (%)	3.00
Plant lifetime NY (years)	30.00
Plant utilization factor u (%)	0.85
Discount rate r (%)	12.00
coal price c_{coal} (\$/t)	119.56

saves 175.2 kilotons of coal and reduces 396.4 kilotons of CO_2 emission for 1000 MW capacity in a fascial year.

$$\eta_{\rm e} = \eta_{\rm th} \eta_{\rm boiler} \eta_{\rm p} \tag{34}$$

Fig. 11 shows cascade utilization of flue gas energy. The flue gas energy is divided into high, moderate and low temperature regions, with thermal loads 1718.6 MW, 219.4 MW and 302.3 MW, respectively. 1783.3 °C represents the flame temperature, 603.1 °C and 435.0 °C are called interface temperatures among the three regions. Two overlap energy utilization zones are marked with bright color, with temperature range 662.7 ~ 603.1 °C and 603.1 ~ 513.0 °C, correspondingly thermal loads 81.1 MW and 118.8 MW. The exhaust flue gas temperature is as low as 120.0 °C.

4.2. Energy balances of the sCO₂ power plant

As shown in Fig. 12, Sankey diagram is used to visualize energy flows, energy balances and energy losses of the sCO2 coal-fired power plant. The widths of the blocks and lines represent the amount of energy and the length doesn't have physical meaning. Taking boiler as an example, the input energy contains three parts, chemical energy of the fuel, extra heat of bottom cycle carried by air, heat carried by sCO₂ after absorbing the regenerative energy, respectively. The output energy enters the turbines except a few energy loss caused by exhaust flue gas. For turbine, input energy from boiler is converted to shaft work of turbines at first, and the rest is divided into two parts, most of which enter HTR and a small part into EAP. For recuperators, energy transfer and conversion take place inside the system, without work done, work consumed and energy loss. Fig. 13 shows the thermal load distribution of various components for the system. The power plants are divided into two parts: the boiler system and the power cycle. For 1000 MWe net power output, compressors consume 555 MW compression work. Thermal load of recuperators account for 3741 MW, which is 3.7 times of the net power output, indicating that sCO₂ cycle is a highly heat recovery system. Regarding the system as a whole, input energy, energy loss and output energy across the whole sCO₂ cycle system are listed in Table 10. Chemical energy of the fuel is 1959.7 MW, as the only input energy. Electric power output is 1000 MW as the only output energy, accounting for 51.03%, which is the power generation efficiency of the system. Energy losses in boiler, coolers and pipeline are 103.7 MW, 837.3 MW and 18.6 MW, respectively, among which the highest energy loss occurs in coolers, accounting for 42.73%.

4.3. Exergy balances of the sCO₂ power plant

Exergy flows through the coal-fired sCO₂ power plant are marked in Sankey diagram shown in Fig. 14. Similar to Sankey diagram of energy, the widths of the blocks and lines represent the amount of exergy and the length don't have physical meaning. Input exergy, exergy loss and output exergy across the whole sCO₂ cycle system are listed in Table 11. The only exergy input of the power plants is 2008.1 MW from chemical energy of the fuel. The only exergy output is considered to be the work output of 1000 MW. Thus, the exergy efficiency of the power plants is 49.80%. Different from energy loss only existing in boiler, coolers and pipeline (see Fig. 12), exergy loss occurs in any component, totally 1008.15 MW. For the coolers, the exergy destruction is 57.48 MW, only accounting for 2.86% of total exergy inputs, far less than 42.73% of energy loss. The largest exergy destruction exists in the boiler, which account for approximately 40.50% of total exergy inputs and 80.68% of total exergy destruction and loss (see Fig. 15(a)). As shown in Fig. 15(b), the exergy loss in boiler contains four parts: (i) Combustion process, converting chemical energy into thermal energy, accounting for 56.47% of boiler exergy loss. (ii) Mixing process between the low temperature recirculation flue gas and high temperature combustion flame. (iii) Heat transfer process with temperature difference between flue gas and CO₂ in tubes. Fig. 16 shows the heat transfer process in the tail flue. (iv) Energy loss process due to exhaust gas and heat dissipation to environment.

4.4. Economic analysis of the sCO₂ power plant

Economy is an important aspect to enhance market competitiveness of the sCO₂ power plant besides plant efficiency, which will accelerate the commercialization of sCO₂ power cycles in general. Table 12 lists the equipment cost share percentage. For 1000 MW capacity, the total cost consumption of equipment is estimated to reach 1459.85 M\$, combining with the labor and materials installation costs, which is higher than the traditional steam power plant. But over an entire 30 years lifetime of the power plant, the levelized cost of electricity (LCOE) is 36.58 \$/MWh (see Table 13) for sCO₂ power system, which is lower than the watersteam system [52]. Besides, coal consumption of the sCO₂ power system for power supply b_g is 244.31 g/kWh with the reason that the electric generation efficiency η_e is higher to 51.03%.

Regenerator is recognized as key technology for the development of sCO_2 cycle [50]. The lower pinch temperature of regenerators is selected, the higher plant efficiency is and more expensive the plant is due to the increase of surface area and fabrication difficulty [50]. Among all the components cost estimation shown in Table 12, the proportion of regenerators is the largest, accounting for 48.47%. Besides, boiler accounts for about 29.25% of the power plant costs, coolers accounting for about 2.82%, turbines and compressors accounting for about 13.19%.

Table 10			

Input energy,	energy loss a	and output energy	gy across the	whole sCO ₂	cycle system
r · · · · · · · · · · · · · · · · · · ·	0,	· · · · · · · · · · · · ·	32 · · · · · · · ·	2	

Items	Energy/MW	Ratio/%		
Input energy				
Fuel	1959.7	1		
Energy loss				
Boiler	103.7	5.29%		
Coolers	837.3	42.73%		
Pipe	18.6	0.95%		
Output energy				
Electric power output	1000.0	51.03%		
Energy efficiency	51.03%			

Table 11
Input exer

Input exergy,	exergy	loss and	output	exergy	across	the whole	e sCO ₂	cycle	system
---------------	--------	----------	--------	--------	--------	-----------	--------------------	-------	--------

Items	Energy/MW	Ratio/%
Input exergy		
Fuel	2008.1	1
Exergy destruction and loss		
Boiler	813.3	40.50%
Turbines	47.9	2.38%
Compressors	37.9	1.89%
Recuperators	51.5	2.57%
Coolers	57.5	2.86%
Output exergy		
Electric power output	1000.0	49.80%
Exergy efficiency	49.80%	

Table 12

Costs of various components of the sCO₂ coal-fired power plant.

Components		Cost/M\$	Ratio/%
Boiler		29.25	29.25
Recuperators	HTR	49.82	48.87
	MTR	92.48	
	LTR	62.66	
Turbines	T1	12.34	2.93
	T2	11.95	
	T3	12.00	
Compressors	C1′	5.63	2.54
-	C1	10.25	
	C2	12.15	
	C3	12.28	
Coolers	Cooler	28.28	2.82
	Intercooler	13.57	
Generators		5.69	0.40
Others		188.38	13.19
Total equipment inve	estment	1459.85	1.00

Table 13

Overall performance data for the sCO₂ coal-fired power plant.

Parameter	values
Net power $W_{net}(MW)$	1000.00
Cycle thermal efficiency $\eta_{\rm th}$ (%)	54.43
Boiler efficiency $\eta_b(\%)$	94.71
Electric generation efficiency η_e (%)	51.03
Coal consumption for power supply $b_g(g/kWh)$	244.31
Levelized cost of electricity LCOE(\$/MWh)	36.58

5. Conclusion

Following conclusions can be drawn based on the present study:

- 1) The roadmap to reach the efficiency limit for sCO_2 coal-fired power plant is proposed, reflected in two levels. The first level considers general analysis of sCO_2 cycle. By comparing the cycle performances of RC, TC, TC + RH, TC + DRH, and TC + DRH + IC, we conclude that TC + DRH + IC is applicable to reach the high system efficiency. The second level regards the sCO_2 cycle coupling with the boiler. It is concluded that OEU successfully absorbs flue gas energies over entire temperature range, and the partial flow mode is applicable to decrease pressure drops of boiler.
- 2) For comprehensive utilization of TC + DRH + IC, RH and TC contribute the first and second largest contribution to increase the system efficiency. IC and DRH make similar contribution for efficiency improvement. More stages compressions beyond 3 are not recommended, because the efficiency improvement is limited but increases the system complexity when the compressions stages are beyond three.
- 3) At the main vapor parameters of 35 MPa/630 °C, the proposed cycle attains the thermal efficiency of 54.43%. The electricity efficiency is 51.03%, which is higher than 48.12% for a supercritical water-steam power plant at the same capacity. Such efficiency improvement saves 175.2 kilotons of coal and reduces 396.4 kilotons of CO₂ emission in a fascial year.
- 4) For 1000 MWe net power output, compressors consume 555 MW compression work. Thermal load of recuperators account for 3741 MW, which is 3.7 times of the net power output, indicating that sCO₂ cycle is a highly heat recovery system.
- 5) For the proposed system, over an entire 30 years lifetime of the power plant, the levelized cost of electricity (LCOE) is 36.58/MWh, and the coal consumption for power supply b_g is 244.31 g/kWh. The LCOE and b_g are significantly lower than those of water-steam Rankine cycle power plant. This comparison indicates better

economic feature of the sCO_2 power plant than water-steam power plant.

CRediT authorship contribution statement

Zhaofu Wang: Methodology, Software, Investigation, Writing – original draft. Haonan Zheng: Software, Investigation. Jinliang Xu: Conceptualization, Supervision, Funding acquisition, Writing – review & editing. Mingjia Li: Conceptualization, Methodology. Enhui Sun: Conceptualization, Methodology, Writing – review & editing. Yuandong Guo: Investigation. Chao Liu: Methodology, Validation. Guanglin Liu: Formal analysis.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements:

This work was supported by Natural Science Foundation of China (52130608, 51821004).

References:

- Wei Y, Chen K, Kang J, Chen W, Wang X, Zhang X. Policy and management of carbon peaking and carbon neutrality: a literature review. Engineering 2022.
- [2] Xu G, Schwarz P, Yang H. Adjusting energy consumption structure to achieve China's CO₂ emissions peak. Renew Sustain Energy Rev 2020;122:109737.
- [3] National Bureau of Statistics of China. China energy statistical yearbook. Beijing: China Statistics Press; 2020.
- [4] Murakoshi T, Suzuki K, Nonaka I, Miura H. Microscopic analysis of the initiation of high-temperature damage of Ni-Based heat-resistant alloy. In ASME 2016 international Mechanical engineering congress and exposition, Phoenix, Arizona, USA.
- [5] Fan H, Zhang Z, Dong J, Xu W. China's R&D of advanced ultra-supercritical coalfired power generation for addressing climate change. Therm Sci Eng Prog 2018;5: 364–71.
- [6] Xu J, Liu C, Sun E, Xie J, Li M, Yang Y, et al. Perspective of S-CO₂ power cycles. Energy 2019;186:115831.
- [7] Sulzer G. Verfahren zur Erzeugung von Arbeit aus Warme. Swiss Patent 1950;599.
 [8] Feher EG. The supercritical thermodynamic power cycle. Energy conversion 1968; 8(2):85–90.
- [9] Angelino G. Carbon dioxide condensation cycles for power production. J Eng Power, ASME 1968;90(3):287–95.
- [10] Dostal V. A supercritical carbon dioxide cycle for next-generation nuclear reactors. Department of Nuclear Engineering. USA: MIT; 2004.
- [11] Gao C, Wu P, Shan J, Huang Y, Zhang J, Wang L. Preliminary study of system design and safety analysis methodology for supercritical carbon dioxide Brayton cycle direct-cooled reactor system. Ann Nucl Energy 2020;147:107734.
- [12] Park JH, Yoon J, Eoh J, Kim H, Kim MH. Optimization and sensitivity analysis of the nitrogen Brayton cycle as a power conversion system for a sodium-cooled fast reactor. Nucl Eng Des 2018;340:325–34.
- [13] Park JH, Park HS, Kwon JG, Kim TH, Kim MH. Optimization and thermodynamic analysis of supercritical CO₂ Brayton recompression cycle for various small modular reactors. Energy 2018;160:520–35.
- [14] Wang K, He Y. Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO₂ Brayton cycle based on integrated modeling. Energ Convers Manage 2017;135:336–50.
- [15] Singh R, Miller SA, Rowlands AS, Jacobs PA. Dynamic characteristics of a direct heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant. Energy 2013;50:194–204.
- [16] Yang J, Yang Z, Duan Y. Off-design performance of a supercritical CO₂ Brayton cycle integrated with a solar power tower system. Energy 2020;201:117676.
- [17] Linares JI, Montes MJ, Cantizano A, Sánchez C. A novel supercritical CO₂ recompression Brayton power cycle for power tower concentrating solar plants. Appl Energy 2020;263:114644.
- [18] Ruiz-Casanova E, Rubio-Maya C, Pacheco-Ibarra JJ, Ambriz-Díaz VM, Romero CE, Wang X. Thermodynamic analysis and optimization of supercritical carbon dioxide Brayton cycles for use with low-grade geothermal heat sources. Energ Convers Manage 2020;216:112978.

Z. Wang et al.

- [19] Li Bo, Wang S-S, Wang K, Song L. Comparative investigation on the supercritical carbon dioxide power cycle for waste heat recovery of gas turbine. Energ Convers Manage 2021;228:113670.
- [20] Pan P, Yuan C, Sun Y, Yan X, Lu M, Bucknall R. Thermo-economic analysis and multi-objective optimization of S-CO₂ Brayton cycle waste heat recovery system for an ocean-going 9000 TEU container ship. Energ Convers Manage 2020;221: 113077.
- [21] Liese E, Albright J, Zitney SA. Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO₂ recompression closed Brayton cycle. Appl Energ 2020;277:115628.
- [22] Li H, Zhang Y, Yao M, Yang Y, Han W, Bai W. Design assessment of a 5 MW fossil fired supercritical CO₂ power cycle pilot loop. Energy 2019;174:792–804.
- [23] Le Moullec Y. Conceptual study of a high efficiency coal-fired power plant with CO₂ capture using a supercritical CO₂ Brayton cycle. Energy 2013;49:32–46.
- [24] Xu J, Sun E, Li M, Liu H, Zhu B. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant. Energy 2018;157:227–46.
- [25] Bai W, Zhang Y, Yang Y, Li H, Yao M. 300 MW boiler design study for coal-fired supercritical CO₂ Brayton cycle. Appl Therm Eng 2018;135:66–73.
- [26] Moisseytsev A, Sienicki J J. Transient accident analysis of a supercritical carbon dioxide brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor. In: International Conference on Nuclear Engineering, Miami, Florida, USA; July 17-20, 2006.
- [27] Moisseytsev A, Sienicki JJ. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. Nucl Eng Des 2009; 239(7):1362–71.
- [28] Padilla RV, Too YCS, Benito R, Stein W. Effects of relative volume-ratios on dynamic performance of a direct-heated supercritical carbon-dioxide closed Brayton cycle in a solar-thermal power plant. Appl Energ 2015;148:348–65.
- [29] Ehsan MM, Duniam S, Li J, Guan Z, Gurgenci H, Klimenko A. Effect of cooling system design on the performance of the recompression CO₂ cycle for concentrated solar power application. Energy 2019;180:480–94.
- [30] Padilla RV, Too YCS, Benito R, Stein W. Exergetic analysis of supercritical CO₂ Brayton cycles integrated with solar central receivers. Appl Energ 2015;148: 348–65.
- [31] Linares JI, Montes MJ, Cantizano A, Sánchez C. A novel supercritical CO₂ recompression Brayton power cycle for power tower concentrating solar plants. Appl Energ 2020;263:114644.
- [32] Zhang F, Zhu Y, Li C, Jiang P. Thermodynamic optimization of heat transfer process in thermal systems using CO₂ as the working fluid based on temperature glide matching. Energy 2018;151:376–86.
- [33] Sun E, Xu J, Li H, Li H, Liu C, Xie J. Synergetics: The cooperative phenomenon in multi-compressions S-CO₂ power cycles. Energy Conversion and Manag X 2020;7: 100042.
- [34] Sun E, Xu J, Hu H, Li M, Miao Z, Yang Y, et al. Overlap energy utilization reaches maximum efficiency for S-CO₂ coal fired power plant: A new principle. Energ Convers Manage 2019;195:99–113.
- [35] Mecheri M, Le Moullec Y. Supercritical CO₂ Brayton cycles for coal-fired power plants. Energy 2016;103:758–71.

Energy Conversion and Management 269 (2022) 116166

- [36] Zhang Y, Li H, Han W, Bai W, Yang Yu, Yao M, et al. Improved design of supercritical CO₂ Brayton cycle for coal-fired power plant. Energy 2018;155:1–14.
- [37] Park S, Kim J, Yoon M, Rhim D, Yeom C. Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO₂ Brayton power cycle. Appl Therm Eng 2018;130:611–23.
- [38] Sun E, Xu J, Li M, Liu G, Zhu B. Connected-top-bottom-cycle to cascade utilize flue gas heat for supercritical carbon dioxide coal fired power plant. Energ Convers Manage 2018;172:138–54.
- [39] Liu C, Xu J, Li M, Wang Z, Xu Z, Xie J. Scale law of sCO₂ coal fired power plants regarding system performance dependent on power capacities. Energ Convers Manage 2020;226:113505.
- [40] Zhu B, Xu J, Wu X, Xie J, Li M. Supercritical, "boiling" number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes. Int J Therm Sci 2019;136:254–66.
- [41] Zhou J, Zhu M, Xu K, Su S, Tang Y, Hu S, et al. Key issues and innovative doubletangential circular boiler configurations for the 1000 MW coal-fired supercritical carbon dioxide power plant. Energy 2020;199:117474.
- [42] Liu C, Xu J, Li M, Wang Q, Liu G. The comprehensive solution to decrease cooling wall temperatures of sCO₂ boiler for coal fired power plant. Energy 2022;252: 124021.
- [43] Yang D, Tang G, Fan Y, Li X, Wang S. Arrangement and three-dimensional analysis of cooling wall in 1000 MW S-CO₂ coal-fired boiler. Energy 2020;197:117168.
- [44] Wang Z, Sun E, Xu J, Liu C, Liu G. Effect of flue gas cooler and overlap energy utilization on supercritical carbon dioxide coal fired power plant. Energ Convers Manage 2021;249:114866.
- [45] Fan Q. Boiler principle. Beijing: China Electric Power Press; 2014 [in Chinese].[46] Wang Z, Sun B, Wang J, Hou L. Experimental study on the friction coefficient of
- supercritical carbon dioxide in pipes. Int J Greenhouse Gas Conf 2014;25:151–61. [47] Yang S, Tao W. Heat transfer. Beijing: Higher Education Press; 2006 [in Chinese].
- [48] Yu C, Xu J, Sun Y. Transcritical pressure Organic Rankine Cycle (ORC) analysis based on the integrated-average temperature difference in evaporators. Appl Therm Eng 2015;88:2–13.
- [49] Boilers-Theory CD. Design and operation. Xi'an: Xi'an Jiaotong University Press; 2008.
- [50] Weiland N T, Lance W B, Pidaparti S. SCO₂ power cycle component cost correlations from doe data spanning multiple scales and applications. In: ASME, editor. Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Phoenix, Arizona, USA; June 17-21, 2019.
- [51] Calculating method of economical and technical index for thermal power plant. National Energy Administration; 2015.
- [52] Xu J, Wang X, Sun E, Li M. Economic comparison between sCO₂ power cycle and water-steam Rankine cycle for coal-fired power generation system. Energ Convers Manage 2021;238:114150.
- [53] Marchionni M, Bianchi G, Tassou SA. Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO₂ in the supercritical state. Energy 2018;148:1140–52.