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ABSTRACT: The contact angle of a nanodroplet on a surface may deviate
from that of a macrodroplet on a surface. Even though there are many studies
regarding line tension, it is not well understood. In this paper, molecular
dynamics simulation is performed for nanodroplets on a concave solid wall.
The Lennard-Jones (L-J) potential is directly used or modified to simulate
the force interaction between argon atoms and between solid−liquid
particles. The initial droplet radius is 4, 5, and 6 nm, respectively. The k
coefficient is defined as the ratio of the initial droplet radius with respect to
the curvature radius of concave walls, which is in the range of 0−0.9, in which
k = 0 refers to a flat surface. We found that indeed the contact angle θ of a
nanodroplet on a concave wall deviates from that of a macrodroplet on a flat
surface. Contact angles display a two region distribution, in which θ increases with increasing k for k < 0.5 and decreases with
increasing k for k > 0.5. The k coefficient influences the droplet morphology. With k in the range of 0−0.9, the vapor−liquid
interface is switched from a convex shape to a flat shape and finally reaches a concave shape. The line tension generally behaves in an
increasing trend with the increase of k but becomes constant when k is beyond 0.7. The liquid densities, radial distribution functions,
and coordination numbers show that the liquid particles are more closely packed with each other with the increase of k. The line
tension achieves a positive sign and on the magnitude of 10−11 N, which has a linear increase with respect to the peak density of the
first liquid layer.

■ INTRODUCTION

Due to the fast development of micro-/nanofabrication
techniques, solid structures can be fabricated in various shapes,
including both the flat surface and concave surface.1,2 The
latter may be used for the dropwise condensation improve-
ment. When the concave surface temperature is lower than the
dew-point temperature, the vapor in the air can be nucleated to
form many nanodroplets on the concave surface. When these
droplets are mixed with each other, the coalescence-induced
jumping takes place to enhance the dropwise condensation
heat transfer.3,4 This phenomenon can occur in nature as well
as during the microfabrication process in a clean room.
The line tension can be neglected for macrosystems but is

important for various applications in nanosystems. On the
curved surface, on a nanoscale level, this force is of great
significance for froth flotation, microporous solids, and
condensation on nanorods.5 Even though there are many
studies available for line tensions in literature, there are no
general conclusions that can be drawn till date. Dated back to
1878, Gibbs found that the interactions near the gas−liquid−
solid three-phase contact line could not be treated by the free
energies of each pair of phases alone.6 Hence, he defined line
tension as the excess energy per unit length of a contact line of
three phases, analogous to surface tension, which is the excess
free energy per unit area. Harkins estimated the magnitude of
line tension based on energy conservation between free energy,

latent heat of evaporation, and total energy.7 Pethica defined
the line tension on an ideal surface to give the modified Young
equation as8
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where τ is the line tension, θ and θY are the contact angle and
the Young contact angle, respectively, and the subscripts s, l,
and v represent the solid, liquid, and gas, respectively. R is the
radius of curvature of a liquid droplet on an ideal solid surface
at the equilibrium state with respect to the vapor phase. Dobbs
and Indekeu studied the contact line between a thin film and a
bulk liquid and calculated the line tension by employing an
interface displacement model equivalent to Derjaguin’s and de
Gennes’ approach.9 Qu et al. proposed the gradient theory to
calculate and analyze the line tension−free energy of a liquid−
liquid−fluid three-phase contact line.10 By considering the free
energy to be dependent on the thickness and properties of the
contact line, they used an extended gradient theory approach
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to evaluate the line tension of the contact zone. The theoretical
outcomes with hexane−water−nitrogen and cyclohexane−
water−nitrogen as working fluids agreed with the existing
experimental data.
The line tension is influenced by various factors, including

the ratio of the droplet size and the radius of surface curvature,
characteristic angle, wall roughness, and so forth . Schimmele
et al.11,12 studied liquid−liquid−gas and gas−liquid−solid
systems. They defined line tensions in two different ways,
showing identical contact angles based on different definitions
of line tensions. Guzzardi and Rosso13 studied the effect of the
radius of curvature on droplet wettability and analyzed the sign
of line tensions. They showed that compared to the positive
line tension, with the negative line tension, it is easier to make
the droplet stabilize on the curved surface. Hienola et al.14

evaluated the contact angle and the line tension based on
heterogeneous bubble nucleation data, showing larger micro-
scopic contact angles than those in the macroscale. The line
tension got a negative value and decreased the energy barrier
for bubble nucleation and thereby shortened the bubble
nucleation time. Checco and Guenoun15 measured the contact
angle of microsized and nanosized alkane droplets partially
wetting a model substrate using noncontact atomic force
microscopy. The contact line curvature was determined
dependent on the contact angle with unprecedented accuracy.
The line tension is measured to be negative and on the
magnitude of 10−10 N. Gu et al.16,17 studied the size effect of
the contact angle in the solid−oil−water system and explored
its relationship with respect to line tension. Positive line
tension was detected and about 8.2 × 10−7 N. The line tension
effect becomes more obvious with a decrease of droplet
volumes. On the other hand, Leelamanie and Karube18

identified a positive line tension which is on the order of
10−5 N.
In summary, both theoretical and experimental works have

been done on line tensions. The measured line tensions are in
a very wide range of 10−12 to 10−5 N with an uncertain sign.
Based on microscopic density functional theory, Bauer and
Dietrich19 calculated the internal structure of the three-phase
contact line and the morphology of liquid wetting films on a
substrate. The numerical simulations are compared with those
predicted by a simple phenomenological interface displace-
ment model. They found that the interface displacement
model provides a quantitatively reliable description of the
interfacial structures. Churaev et al.20 derived an analytical
expression for line tension for the disjoining pressure isotherm
in a simplified form. The line tension is shown to depend not
only on the isotherm parameters but also on the radius of the
three-phase contact perimeter. Park et al.21 used molecular
dynamics to investigate the wetting characteristics such as
contact angle, wetting radius, and topography of water droplets
on smooth and random solid surfaces. For weak interaction
between the solid and liquid, the contact angle is less affected
by surface roughness. However, for strong interaction between
the solid and liquid, contact angles are influenced by both the
droplet size and surface roughness. Weijs et al.22 computed the
shape of Lennard-Jones nanodrops using molecular dynamics
and compared them to density functional theory. The
deviation from Young’s law was very small and would
correspond to a typical line tension length scale (defined as
line tension divided by surface tension) similar to the
molecular size and decreasing with Young’s angle. Peng et
al.23,24 numerically simulated cylindrical and spherical nano-

droplets for comparison. The contact angles from the
cylindrical drops and Young’s equation agree very well over
the range of surface strengths and cylindrical drop sizes, except
on a very weak surface. For spherical droplets, a deviation
between the contact angle of spherical droplets and Young’s
equation was evident but decreased with increasing interaction
strengths to be negligible for contact angles less than 90°.
The above literature survey indicates that most of the

nanodroplet wetting studies were investigated on flat surface.
The studies on the curved surface are not sufficient. In this
paper, we investigate the nanodroplet wetting on concave
surface, focusing on the effects of the droplet size and
curvature radius of the solid wall. The behavior is finally
correlated with the fluid density amplitude of the first fluid
layer.

■ NUMERICAL METHOD
Figure 1a shows the simulation box to study the nanodroplet
wetting on the concave surface. The box had a size of 34.05 nm

× 34.05 nm × 51.08 nm for Lx, Ly, and Lz, respectively.
Periodic boundary conditions are applied along x and y
directions. The solid wall consists of five layers of atoms,
arranged in the face-centered-cubic (fcc) form with a lattice
constant of 1.5σ and with the ⟨111⟩ crystal plane directly
contacting liquid argon. Figure 1b shows the physical problem
over the xz plane, symmetrized against the half plane in the y
direction, where Rl is the droplet radius and Rs is the radius of
the curvature of the solid wall. In our study, different Rs are
used, corresponding to the number of solid wall atoms in the
range of 8555−56,081. Based on previous studies, only very
tiny droplets can have line tension.9,11,12 Hence, three droplet
radii are selected as Rl = 4, 5, and 6 nm, corresponding to the
number of liquid atoms of 5298, 10,305, and 17,856,
respectively. It is noted that surface tension between the
solid and liquid (σlv) is dependent on the droplet size in
nanoscale. However, previous studies show that σlv is changed
by 5% corresponding to the 7 nm variation of droplet radii.25

Hence, it is reasonable to assume the constant surface tension
in a narrow range of Rl = 4, 5, and 6 nm in this paper.
During simulation, the solid atoms are stationary. Initially,

liquid atoms are also arranged according to the fcc structure
but will be moving once the simulation is initiated. The argon
liquid is used, with a lattice constant of 1.72σ. Initially, liquid
density is set as ρσ3 = 0.78, where ρ is the number of particles
per unit volume, and σ is the length scale of the liquid atom.

Figure 1. Physical problem studied in this study (a: 3D configuration;
b: 2D configuration).
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An important parameter k is defined as the ratio of the droplet
radius relative to the radius of curvature of the solid wall, k =
Rl/Rs. Examining eq 1 identifies that once the characteristic
contact angle θY for a macrodroplet on a flat surface is fixed,
the cosine component of θY has the same effect on θ for
different k. The Newton equation is written for each liquid
atom as

∑ ∑⃗ = ⃗ + ⃗
≠ = ≠ =

m
r
t

F F
d
d j i j

N

ij
j i j
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where Fij refers to the pair interaction force between liquid
atoms, and Fijs represents the pair interaction force between the
liquid and solid atoms, r is the distance between two atoms,
and N and Ns are the number of liquid atoms and solid atoms,
respectively. The pair interaction force is

ϕ
= −

∂

∂
F

rij
ij

ij (3)

The potential for liquid−liquid interaction is written as
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where σ is the length scale of the argon atom (σ = 0.3405 nm),
ε is the energy scale of the argon atom ε = 1.67 × 10−21 J), and
m is the mass of an argon atom (m = 6.69 × 10−23 g). We also
use eq 4 for the pair interaction between solid atoms, using σs
= 0.2475 nm and εs = 8.35 × 10−20 J to replace σ and ε,
respectively. The potential between the solid−liquid inter-
action is given as follows26
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where εsl and σsl are the energy scale and the length scale for
solid−liquid interactions, respectively, which are decided by
the Lorentz−Berthelot principle,27 ε ε ε= ·sl l s and σsl = (σs +
σl)/2. The subscripts s and l represent the solid and the liquid,
respectively. The parameters α and β are used to adjust the
intensity of the interaction between the solid and the liquid. In
this paper, α = 0.14 and β = 0.7 are used, corresponding to a
contact angle of 38.4° hydrophilic wettability for a macroscale
droplet on an ideal flat surface.27

The Velocity-Verlet algorithm method is used to solve eq 1.
The timestep is set as Δt = 4.66 × 10−4 τ, corresponding to 1

fs, where τ is the timescale for argon, τ σ ε= m /2 . The
simulation system is kept at a constant temperature of T =
0.827 ε/kB, where kB is the Boltzmann constant. Totally, each
case runs four million steps, among which the first two million
steps are used for the system to reach the equilibrium state,
and the latter two million steps are used for the statistical
analysis of the computed data.
Figure 2 shows two independent systems to obtain the

surface tension of γlv between the vapor and liquid. A system
size of 6.81 nm × 6.81 nm × 17.03 nm is shown in Figure 2a.
The surface area between the liquid and vapor is recorded as A.
Initially, the bottom part of the box contains liquid atoms
based on the fcc structure. The system energy is recorded as
Euni after the equilibrium state is reached. An alternative way is
to arrange the whole liquid atoms into two equal parts (see
Figure 2b). Hence, the surface area between the vapor and

liquid is 2A. The finally obtained system energy is recorded as
Esep. The surface tension γlv is written as

γ =
−

−
−

≈
−E E

A
T

S S
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E E
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sep uni sep uni sep uni

(6)

The second term of the right side of eq 6 is contributed by
entropy increase, which can be neglected compared to the first
term of the right side of eq 6, where S is the entropy and T is
the temperature. The system is simulated under the NVT
condition with the total number of argon atoms of 6000. The
system temperature is well controlled to be T = 0.827 ε/kB.
Finally, the value of γlv = 9.0452 × 10−3 N/m is obtained,
matching the value reported in the literature.28

Due to the simple structure of argon with one atom only, the
MD simulation saves computation resource. Because the
contact angle on the concave surface is dependent on the
Young contact angle θY and the k value, the results in this
paper can be extended to other complex fluids such as water.
In this relationship, θY is dependent on the molecular
interaction between the solid and liquid, and k is the size
parameter. Thus, if the pair interaction intensity between a
complex fluid and solid is the same as that between argon and
the solid, the contact angles are almost the same for the two
systems.

■ RESULTS AND DISCUSSION
Nanodroplet Wettability on the Concave Surface.

Figure 3 shows the nanodroplet wetting on concave surface
with k = 0.1, 0.3, 0.5, 0.8 and 1.0, respectively. The droplet
radius is Rl = 5 nm. At the initial state, the droplet just contacts
the bottom of the concave surface. With time evolving and due
to the attraction of the solid−liquid interaction, the droplet is
elongated in the z direction to form an oval droplet in the top.
The liquid atoms are adhered on the wall at the bottom part,
and the three-phase contact line is spreading along the concave
surface. The top droplet surface gradually becomes flatter,
leaving residual atoms distributed elsewhere as the vapor in the
box. Once the equilibrium state is reached, the contact angle
obviously appears. Due to the confinement by the concave wall
and the attraction between the solid and liquid, the top part of
the droplet is gradually switched from the convex shape to a
flat shape and finally reaches the concave shape, with an
increase of k from 0.1 to 0.9.

Figure 2. Physical system to determine the surface tension between
the vapor and the liquid (a: one surface between the vapor and the
liquid; b: two surfaces between the vapor and the liquid).
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Here, the contact angle is obtained via a method of the
identical fluid density profile by establishing a cylindrical
coordinate characterized by a radial coordinate r and a height
coordinate z (see Figure 4a). The system is subdivided into
750 × 250 grids, each grid having Δr = Δz = 0.2σ. Figure 4b
shows the droplet morphology and the definition of the
contact angle. After the equilibrium state is reached, the fluid
density distribution over the xz plane is deduced. An important
task is to achieve the vapor−liquid interface location and the
vapor−liquid−solid contact point. As shown in Figure 4b, the
solid substrate height is s and the liquid height is h. The
vapor−liquid interface is defined at the location where the
density is ρ* = 0.5(ρl + ρv), where ρl and ρv are the liquid
density in the bulk liquid region and vapor density in the bulk
vapor region, respectively. The contact angle is the angle
between two tangent lines of the vapor−liquid interface and
the solid wall at the three-phase contact point. Figure 4c shows
the density profile in the fluid region excluding the solid wall,
showing the oscillating ρσ3 within the liquid region but a flat
distribution in the vapor region. Hong et al.28 gives the
theoretical density distribution at z as follows

ρ ρ ρ ρ ρ= + − − ×
−

z h
z z

d
( )

1
2

( )
1
2

( ) tan
2( )

l v l v
0

(7)

where d is the thickness of the vapor−liquid interface and z0 is
the center location of the vapor−liquid interface. Figure 4c
shows the agreement between the average densities deter-
mined by MD simulations and the theoretical determined
values.
One may be interested in the evolution of the droplet

morphology and contact angles on a concave surface (see
Figure 5 with Rl = 5 nm and k = 0.5). At the initial time t = 0, a
droplet with its radius of 5 nm is standing on the bottom of a
concave bowl. The contact angle is 180° at t = 0. Based on the
arrangement of liquid atoms at t = 0, the thickness of the
vapor−liquid interface is zero also called the mathematical
thickness. With time evolving, the thickness of the vapor−
liquid interface is not zero anymore but reaches a limited value
within ∼1σ, where σ is the characteristic length of a single
argon atom. Across the two sides of the interface thickness is
the bulk liquid with densely populated atoms and the bulk
vapor with sparsely populated atoms. The contact point is the

Figure 3. Wetting process for a nanodroplet on a concave wall at different k.
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point at which the gas−liquid interface intercrosses with the
concave surface, while the contact line is the collection of
contact points along the circumference direction on the
concave surface. Droplet patterns are shown at t = 0, 100, 200,
400, 1000, and 2000 ps (see Figure 5a). Having the droplet
morphology and the definition of the vapor−liquid interface
and contact line, one can have the geometry picture showing
both the droplet and concave wall (see Figure 5b). The contact
angle for the nanodroplet on the concave surface is the angle
between the two tangent lines of ab and cd. Figure 5c shows
dynamic contact angles θ versus time. It is seen that θ quickly
decreases from 180° at t = 0 within an initial transition stage of
∼600 ps. Beyond the transition stage, θ slowly decreases and
finally stabilizes at 55.7°, which is called the equilibrium
contact angle.
Contact angle θ versus k is shown in Figure 6, in which Rl =

4, 5, and 6 nm are presented. Two types of droplet
morphologies appear on the concave solid wall, symmetrically
distributed against at k = 0.5. The droplet displays a convex
shape with k < 0.5 but a concave shape with k > 0.5. The θ
increases with increasing k with k < 0.5 but decreases with
increasing k with k > 0.5. This variation trend is the same for
any droplet size, attaining the maximum contact angle at k =

0.5. Figure 6 emphasizes the important effect of the curvature
of the concave wall on contact angles. We remember that k = 0
belongs to the flat surface. For example, when the line tension
effect is considered with the droplet size of 4 nm, the contact
angle is θ = 51.2° on a flat surface (k = 0) but is increased to
58.4° on a concave surface (k = 0.5). The increased trend of
contact angles is also observed from k = 0 to 0.5 with droplet
sizes of 5 and 6 nm (see Figure 6).
We note that the present work focusses on 3D simulation

results. To explore the effect of 2D and 3D on nanodroplet
wetting, additional 2D simulations are performed, containing a
concave cylinder shell for the solid and 2D droplet for the
liquid. The contact angle keeps a constant value of 38.4° at β =
0.7 with different k. The θ = 38.4° is exactly equal to that on
the flat surface. The 2D droplet wettability is not influenced by
the solid wall curvature, matching the results reported in the
literature.22−24 The line tension effect does not occur for the
2D droplet but becomes important for the 3D droplet, showing
the strong 3D effect. Wolansky and Marmur29 demonstrated
that the droplet contact angle is not influenced by the solid
wall curvature without considering line tension. The effect of

Figure 4. Cylindrical coordinate system to determine the fluid density
distribution (a: cylindrical coordinate; b: 2D density distribution; c:
fluid density vs distance away from the solid wall).

Figure 5. Dynamic droplet morphology and contact angles for 5 nm
droplet on the concave surface (a: droplet morphology; b: geometric
parameters defining the contact angle; c: contact angles vs time).

Figure 6. Contact angles versus k at different droplet sizes.
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droplet size on wettability is also identified in Figure 6,
showing that larger 3D droplet wettability gradually
approaches that on the flat wall.
Figure 6 presents a clue to judge the criterion under which

the line tension effect is important. Two parameters influence
the contact angle on the concave surface (θ): the characteristic
contact angle for macrodroplets on the flat surface (θY) and the
k value. We note that the k = 0 case belongs to the flat surface.
For very small droplets such as 4, 5, and 6 nm, the line tension
effect cannot be neglected even on a flat surface. This is
because θ and θY show apparent difference for these small
droplets. One may be interested to know the critical droplet
size beyond which the line tension effect disappears. Because k
= 0.5 demonstrates the largest line tension effect, examining
that the data trend at k = 0.5 estimates the critical droplet size.
With the droplet sizes from 4 to 6 nm, the contact angle
gradient is (1.8−2.7)°/nm. Assuming the average value of
2.2°/nm, the droplet radius of 13 nm will yield the same
contact angle θ as θY by such data extension. In one word, the
droplet size beyond 13 nm does not have the line tension
effect. This is why many authors investigate the line tension
effect with droplet sizes smaller than 10 nm.22,24,28

Figure 7 shows contact radius Rc and droplet radius Rd
versus k, displaying the two region distribution interfaced at k

= 0.5. For k < 0.5, the convex vapor−liquid interface yields
nearly constant contact radii Rc at different k. For k > 0.5, Rc
sharply decreases, which is due to the decreased internal
volume enclosed by the concave solid wall to elevate the
contact line position. Rd also has two region distribution. Rd
increases with increasing k for k < 0.5, corresponding to the
convex vapor−liquid interface of a droplet on the concave solid
wall. The vapor−liquid interface nearly becomes flat at k = 0.5,
beyond which the vapor−liquid interface becomes concave to
decrease Rd.

Line Tension of the Nanodroplet on the Concave
Surface. To calculate the line tension of the nanodroplet on
the concave surface, it is necessary to consider the curvature of
the solid wall and droplet morphology. Equation 1 is revisited
to deal with the two types of droplet morphologies at the
equilibrium state (see Figure 8). Due to the curvature of the

solid wall, the line tension component is not parallel to the
surface tension of σsl between the solid and liquid. Hence, eq 1
cannot be used to compute the line tension directly. To
overcome this issue, Hienola et al.9 obtained the following
equation

σ σ σ θ σ ϕ− − − =τcos cos 0sv sl lv (8)

where θ is the contact angle, ϕ is the angle between the plane
of the vapor−liquid−solid three-phase contact line and the
solid−liquid interface, and στ is the line tension component,
pointing the circle center of the contact line

σ τ=τ R/ c (9)

where τ is the line tension. Combining eqs 8 and 9 and
referring to Figure 8 yield

σ σ σ θ τ
ϕ

− − − =
R

cos
tan

0sv sl lv
s (10)

Rewriting eq 10 yields the relationship between cos θ and Rs
and τ

θ θ τ
σ ϕ

= −
R

cos cos
1
tanY

lv s (11)

i
k
jjjjj

y
{
zzzzzτ σ θ θ

ϕ
= −

R
(cos cos )/

1
tanlv Y

s (12)

Figure 9a plots the linear relationship between cosθ and 1/
(Rs tan ϕ), in which simulation data points are shown and the
linear curves are based on the correlation of the simulation
results, covering the range of k from 0.1 to 0.9. It is emphasized
that our work is performed at α = 0.14 and β = 0.7, under

Figure 7. Contact radii of the solid−liquid−vapor three-phase contact
line Rc (a) and the radii of the solid wall curvature Rd (b) versus k at
different droplet sizes.

Figure 8. Force analysis of the nanodroplet on the concave surface.
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which the Yong contact angle is θY = 38.4° corresponding to
cos θY = 0.7837.21 Figure 9a tells us that contact angles in
nanoscale, θ, indeed deviate from that on the macroscale, and
they are influenced by both k and Rs (curvature radius of the
solid wall). We note that the gradient of the line is the
characteristic length of line tension, l = −τ/σlv. The nonparallel
lines at different k indicate that the characteristic lengths of line
tension are different at different k. The line tension is actually
the slope of the line timing the surface tension of σlv between
the vapor and liquid. The negative slopes of the lines
correspond to positive line tension, which are different at
different k.
Because surface tension between the vapor and liquid is not

changed, the line tension is linearly proportional to the
characteristic length of line tension l. Based on Figure 9a, we
achieve the line tension shown in Figure 9b. It is seen that the
line tension is positive and on the magnitude of 10−11 N. When
k is smaller than 0.7, the line tension is increased with an
increase of k due to the effect of the curvature of solid wall.
Beyond the k value of 0.7, the line tension almost does not
change.
As mentioned in Introduction, line tension can be either

negative14,15 or positive.16−18 The present paper identifies
positive line tension. The sign of line tension is dependent on
surface wettability, characterized by the contact angle θY for a
macrodroplet on a flat surface. For hydrophilic wall with θY =
38.4° such as encountered in this paper, line tension is positive.
Otherwise, line tension is negative for nanodroplets on a
hydrophobic wall.
Factors Dominating Line Tension. To explain the

mechanism that governs the variation of line tension, two
parameters are introduced. The first one is the radial
distribution function, RDF, recorded as g(rc), characterizing
the local density fluctuation with a distance rc from the center
of a specific atom or molecule.

ρ π δ

δ
=

∑ ∑ Δ → +

×
= =g r

r r

N r r r

N N
( )

1
4

( )t
N

j
N

c
ave c

2
c

1 1 c c c

t

t

(13)

where Nt is the total steps for the integration and ΔN is the
number of particles for a size interval from rc to rc + δrc. The
g(rc) approaches 1 when rc → ∞.
The second one is the coordination number, coord, which is

the number of atoms or molecules in a rx radius sphere,
describing the microscopic structure of matter.

∫ πρ= g r r rcoord ( )4 d
r

0
c bulk c

2
c

x

(14)

where ρbulk is the bulk number density. The large the coord is,
the closer arrangement of atoms or molecules is.
Figure 10a shows the oscillating ρσ3 versus z − h, distance

away from wall. The oscillating amplitudes are decayed with

the increase of this distance. The first peak values of ρσ3 attain
2.03, 2.28, and 2.49 at k = 0.1, 0.5, and 0.9, respectively. The
location for the first peak occurring almost does not change at
different k. We conclude that the line tension is strongly
related to the density of liquid particles near the wall (see
Figures 9b and 10a). Similar variation trend of the radial
distribution function, g(rc), is identified at different k (see
Figure 10b). However, the peak values are increased with an
increase of k, indicating more closely arranged liquid atoms at
larger k, due to the enhanced confinement of the liquid in the
internal volume with a concave wall. Alternatively, Figure 10c

Figure 9. Variation trend of cos θ and line tension.

Figure 10. Fluid density versus distance away from the wall (a), radial
distribution function g(rc) (b), and coordination number (c).
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shows the monotonic increase of the coordination number
with the increase of k.
Finally, we present the linear relationship between line

tension and the peak density of the first liquid layer (see Figure
11). The logic of the effect of k on line tension is explained as

follows. A specific combination of droplet radius Rl (initial
state) and curvature radius of concave wall Rs forms a
coefficient k. The solid−liquid interaction is enhanced when k
increases due to the confinement of the concave wall. This
effect ensures more atoms or molecules attracted by the solid
wall to increase the line tension. The major finding is that the
line tension is linearly proportional to the peak density of the
first liquid layer.
k = 0.7 is identified as the transition point for line tension

(see Figure 9). The k is the initial droplet radius (Rl) divided
by the curvature radius of the concave wall (Rs, see Figure 1).
For a fixed Rl such as 5 nm presented in Figures 9−11, a
smaller k corresponds to a larger bowl with a smaller height. A
larger k corresponds to a smaller bowl with a larger height. By
increasing k, the interaction between the droplet and concave
wall becomes enhanced due to a larger contact area between
the liquid and solid, explaining the increased line tension with
increase of k. The solid−liquid interaction becomes sufficient
for k > 0.7, yielding the constant density peak of the first liquid
layer with k = 0.7 and 0.9 (see Figure 10a). Because line
tension is linearly proportional to the density peak of the first
liquid layer (see Figure 11), the line tension is not changed
beyond k = 0.7 (see Figure 9).
We note that positive line tension is concerned due to

hydrophilic wettability (θY = 38.4°). This wettability enhances
molecular interaction between the solid−liquid. Thus, liquid
density displays a peak phenomenon near the wall. A
hydrophobic wall may yield negative line tension, under
which the density peak of the first liquid layer decreases, due to
weak interaction between the solid and liquid.
In summary, we identify the important line tension effect for

small droplets in nanoscale. The line tension effect cannot be
neglected even on the flat surface. The concave surface
enhances the line tension effect. For example, considering the
Young contact angle of 38.4° in this paper, a 4 nm droplet has
a contact angle of 51.2° on the flat surface but increases the
contact angle to 58.4° on the concave surface at k = 0.5 (see
Figure 6). This indicates the droplet size effect, which attains a
∼13° difference of contact angles between a macrodroplet
(Young contact angle) and a 4 nm droplet. Also, this indicates
an apparent curvature radius effect of concave wall, which

attains a ∼7° difference of contact angles between the flat
surface with k = 0 and concave surface with k = 0.5.
By extending the data trend obtained in this paper, we claim

a critical droplet radius of ∼13 nm, before which the line
tension effect cannot be neglected but beyond which the line
tension effect is insignificant. Hence, the droplet size is a key
parameter to determine if the line tension effect should be
considered. Due to difficulties in measuring the droplet
morphology for very small droplets, experimental evidence
for line tension effect cannot be presented yet, but will be done
in the future, if the measurement resolution is improved. This
is the reason why many authors investigated the line tension
effect using small droplets in ∼10 nm scale22,24,28 and almost
all of the studies in this area focus on the MD simulations.
However, experimental evidence is presented in the literature
for larger droplets in micron or millimeter scale, under which
contact angles are the same on the flat surface, concave surface,
and convex surface.30,31

■ CONCLUSIONS
When the droplet size is decreased to a nanoscale, the contact
angle concept that is widely applied in the macroscale is not
valid to describe the wetting process of the droplet on solid
walls. In the present work, we focus on the numerical
simulation and analysis of the nanodroplet on concave solid
walls, using the molecular dynamics simulations. The Lennard-
Jones (L-J) potential is used to simulate the force interaction
between argon atoms, and it is modified to simulate the solid−
liquid interaction by introducing two strength coefficients α
and β. Τhe selected values of α and β ensure a 38.4° contact
angle of a macrodroplet on a flat surface. The initial droplet
radius is 4, 5, and 6 nm. The k coefficient is in the range of
0.1−0.9. Following conclusions can be drawn:

1. Contact angles θ of nanodroplets on concave solid walls
deviate from that of macrodroplets on a flat surface. For
example, θ is 58.5° for a 4 nm radius droplet with k =
0.5, which is different from the Young contact angle of
38.4°. Contact angles display the two region distribution,
in which θ increases with increasing k for k < 0.5 and
decreases with increasing k for k > 0.5.

2. The initial droplet size and the curvature radius of the
concave wall influence the droplet morphology. With k
in the range of 0.1−0.9, the vapor−liquid interface is
switched from a convex shape to a flat shape and finally
reaches the concave shape. Both the contact radius of
the three-phase contact line Rc and the droplet radius at
the equilibrium state Rd display the two region
distribution, interfaced at k = 0.5.

3. In the present work, the line tension generally behaves
with the increasing trend with the increase of k but
becomes constant when k is beyond 0.7. The liquid
densities, radial distribution functions g(rc), and
coordination number show that the liquid particles are
more closely packed with each other with the increase of
k. The line tension achieves a positive sign with the
magnitude of 10−11 N, which has a linear relationship
with respect to the peak density of the first liquid layer.
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