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Abstract  The effects of translational, figure-eight 
and double-figure-eight flapping trajectories on the 
dragonfly aerodynamics were numerically studied by 
solving the Navier-Stokes equations. There is a 
common characteristic regarding the lift/drag force 
coefficients that the downstroke flapping provides the 
lift forces while the upstroke flapping creates the 
thrust forces for different flapping trajectories. The 
maximum lift force coefficient exceeds five for the 
translational trajectory. It is greater than six for the 
figure-eight and double-figure-eight flapping trajecto-
ries, which is sufficiently larger than unity under the 
steady state flight condition. The ellipse and dou-
ble-figure-eight flapping trajectories yield the de-
crease of the lift force, while the figure-eight flapping 
trajectory yields higher lift force as well as the thrust 
force than the translational flapping one. During the 
insect flight, the wing flapping status should be 
changed instantaneously to satisfy various require-
ments. Study of the flapping trajectories on the insect 
aerodynamics is helpful for the design of the Mi-
cro-air-vehicles (MAVs). 
Keywords: dragonfly, lift force, drag force, unsteady aerodynamics, 
computational fluid dynamics. 

Insects cannot provide enough lift force to keep them 
afloat according to the conventional aerodynamics. But 
in fact they can not only perform the free flight, but 
also perform the maneuver activities such as fast 
take-off, suspending, back flight, etc. Detecting the 
insect flight secret is important for the design of the 

micro air vehicles (MAVs). 
Early studies on the insect flight aerodynamics were 

focused on the experiments. The flow visualization us-
ing PIV technique[1,2] is a successful method to identify 
the flow field and the composition of the thrust forces, 
but cannot capture the details of the aerodynamics for 
each insect wing. The mechanical wings or airfoils 
were fabricated to perform the dynamic simulation 
measurements based on the similarity principle to ob-
tain the instantaneous insect kinematics[3―7]. Some high 
lift production mechanisms, including the delayed stall 
(or named leading-edge vortex attachment), the pitch-
ing vortices and the trail-edge capture, are identified. 

With the development of the numerical method, the 
computational fluid dynamics (CFD) has become an 
effective tool for studying the insect unsteady aerody-
namics. The effect of the airfoil flow on the lift force 
production[8], the high lift production mechanism of the 
two-dimensional suspension of the dragonfly[9,10], the 
flight kinematics with interactions of the fore and aft 
wings of dragonflies[11], the unsteady flight aerody-
namics of the fruit fly[12], were successfully simulated. 
Some high lift production mechanisms were identified 
through comparisons of the numerical results with the 
experimental measurements. Besides, the effect of the 
flexible wing deformation on the insect flight aerody-
namics has been studied using CFD simulations in re-
cent years[13]. 

The most available studies were performed with the 
translational trajectories of the wing flapping. However, 
most insects perform the flight activities with the hori-
zontal deviation motion (not the translational flapping 
motion). In order to understand the effect of the hori-
zontal deviation motion on the insect aerodynamics, we 
computed the lift/drag forces for several flapping tra-
jectories (the translational, ellipse and figure-eight 
flapping trajectories).  

Refs. [14―16] reported the detailed flapping trajec-
tories (the ellipse, translational and figure-eight flap-
ping motion) for the bonded or free flight insects. But 
they did not describe the effects of these flapping tra-
jectories on the aerodynamics. Wang[17] suggested to 
give the quantitative comparisons among different 
flapping trajectories. Sane and Dickinson[6] used the 
magnetic stepping motor to control the flapping trajec-
tories of the mechanical wing and measured the 
lift/drag forces for the ellipse and figure-eight flapping 
trajectories. But large differences exist between the 
measurements and the numerical simulations. They 

mailto:xujl@ms.giec.ac.cn


 
 

ARTICLES 

concluded that this is because the quasi-steady model 
cannot describe the figure-eight flapping motion. To the 
authors’ knowledge, there are almost no studies on the 
effect of the different flapping trajectories on the flight 
aerodynamics, which is the objective of the present 
paper.  

The insect flight aerodynamics is a complicated un-
steady far field boundary external flow problem. The 
direct three-dimensional simulation is a challenging 
task[18,19]. A practical method is to simplify the 
three-dimensional problem as a two-dimensional one. 
Even though the two-dimensional simulation is unable 
to consider the three-dimensional effect, it saves the 
computational time and excludes too many parameter 
effects. The present paper is a two-dimensional one.  

1  Description of the numerical model 
Dragonfly has perfect maneuver and stable flight 

characteristics. Its wing flapping frequency is lower 
than those of other insects, but may be close to that of 
micro air vehicles. Thus the CFD modeling of the 
dragonfly flight aerodynamics can serve as the guide-
line for the designs of the micro air vehicles (MAVs).  

Fig. 1 shows a pair of fore wings of the dragonfly. 
The dragonfly performs the hybrid motions: upstroke 
and downstroke flapping motions against its body axis 
and the rotation motion against the airfoil axis such as 
o1o2, i.e. changing the wing attack angles frequently. 
During the upstroke and downstroke motion, the two 
wings wiggle back and forth at a specific frequency and 
deviate from the Θ plane periodically. In order to sim-
plify the computation, the three-dimensional effect is 
neglected due to the large wingspan to the chord ratio. 
We only consider the two-dimensional flight aerody-
namics of the cross section in the wingspan direction, 
i.e. the slice chord plane (m1m2 plane). Strictly speaking, 
the wing cross section flapping plane, the m1m2 plane, 
is an arc plane with the arc center located on the wing 
root. For the two-dimensional computation, consider 
the wing motion maintained in the XOY plane with OX 
as the horizontal direction and OY as the vertical direc-
tion.  
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Fig. 2 shows the wing motion focused in the XOY 
plane in Fig.1. We assume that the wing cross section 
has the ellipse shape. The wing chord has the length 
two times that of the long axis of the ellipse with a 
thickness two times that of the short axis of the ellipse. 
A local coordinate xoy is established with the origin 
point located at the center of the wing stroke trajecto- 

 
 

Fig. 1.  Schematic diagram for the dragonfly wing motion. 
 
ries. The x axis is in the stroke plane (Θ plane) and the 
y axis is perpendicular to the stroke plane Θ . For the 
two-dimensional computation, the wing motion con-
sists of the translational motion along the base point 
and the rotation motion against the base point. The base 
point is in the wing rotation axis and set as the ellipse 
center with a distance of 0.5c from the leading edge of 
the wing. The wing motion along the x axis represents 
the three-dimensional upstroke and downstroke flap-
ping. The wing motion along the y axis represents the 
horizontal deviation motion. The wing attack angle 
variation corresponds to the rotation motion. For the 
two-dimensional computation, the wing upstroke and 
downstroke flapping including the horizontal deviation 
motion are considered as  translational motion. The 
variation of the wing attack angles is considered as the 
rotation motion. In order to consider the effect of dif-
ferent flapping trajectories on the flight aerodynamics, 
the horizontal deviation motion function is introduced 
in the present paper,  

0
0( ) cos(2 )

2
A

x t fπ= t  

 (upstroke and downstroke motion), (1) 

 0
1( ) sin(2 )

2
B

y t f tπ= (horizontal deviation motion). (2) 

The wing rotation motion, i.e. the variation of the at-
tack angle of the wing, is expressed as 

 0( ) sin(2 ).
4 4

t f tπ πα π ϕ= − +  (3) 

The dragonfly flight parameters are set at c=1 cm, 
A0=2.5 cm, f0=40 Hz, β=π/3 for the ellipse wing based 
on refs. [9, 20, 21]. Besides, the wing thickness to 
chord ratio is normally set at h/c=0.05. 
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Fig. 2.  (a) The wing positions at different times over a full flapping cycle for the translational flapping trajectory. The solid ellipse represents the posi-
tions at downstroke stage while the dashed ellipse represents positions at upstroke stage. XOY is the world coordinate system while xoy is the local 
coordinate system with the center point located on the center of the flapping trajectories. A0, the flapping amplitude; BB0, the horizontal deviation ampli-
tude; c, the chord length; α, the wing attack angle regarding the angle between the wing chord and the horizontal plane; β, the flapping plane angle 
regarding the angle between the wing rotation trajectory and the horizontal plane. (b) The ellipse flapping trajectory. (c) The figure-eight flapping tra-
jectory. (d) The double-figure-eight flapping trajectory. 
 

We study the effects of  and 0B 1f  on the dragon-
fly flight aerodynamics. 0 0B =  stands for the 
straight-line flapping with the same motion function as 
that in ref. [9] (Fig. 2(a)). Different flapping trajectories 
occur with different 1f  if 0 0B ≠ : the ellipse flapping 
trajectory with 1

www.scichina.com   www.springerlink.com 779 

0f f=  (Fig. 2(b)), the figure-eight 
flapping with 1 2 0f f=  (Fig. 2(c)), the double-figure- 
eight flapping with 1 3 0f f=  (Fig. 2(d)). The air den-
sity ρ  is 1.225 kg/m3. The air viscosity is set at 
μ=2.45×10−4 Pa·s which is larger than the real air 
value in order to lower the air Reynolds number, thus 
making it possible to perform comparisons with those 
of Wang [9]. The Reynolds number is 157 (Re=Vmax× 
c/v=157) with Vmax as the maximum flapping velocity. 

2  The governing equations and boundary condi-
tions 

2.1  Governing equations 

In the present paper, the following mass and mo-
mentum equations are used to simulate the two- dimen-
sional unsteady external laminar flow: 

 0,u v
X Y
∂ ∂

+ =
∂ ∂

 (4) 

 
2 2

2 2
1 ,u u u p u uu v

t X Y X X Y
ν

ρ
⎛∂ ∂ ∂ ∂ ∂ ∂

+ + = − + +⎜
∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 
2 2

2 2
1 .v v v p v vu v

t X Y Y X Y
ν

ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

+ + = − + +⎜ ⎟
∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (6) 

Because the wing has different positions versus time, 
the computational domain and the unit control volume 
have to be changed periodically. Therefore, the compu-
tational domain has to be re-plotted at each time step. 
To keep conservation, in eqs. (4)―(6) the dynamic grid 
effect should be taken into account. Considering the 
grid moving velocity of gV , the mass and momentum 

equations are written in the form of the integrated gov-
erning equations 

 ( )g
d d d
dt

ρ ρ
Ω ∂Ω

0,Ω + − ⋅∫ ∫ V V A =  (7) 

 

  ( )

,

g
d ud u d
dt

pu d d
X

ρ ρ

μ

Ω ∂Ω

∂Ω Ω

Ω + −

∂⎛ ⎞= ∇ ⋅ + − Ω⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

V V A

A

⋅
 (8) 
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.

g
d vd v d
dt

pv d d
Y

ρ ρ

μ

Ω ∂Ω

∂Ω Ω

Ω + −

∂⎛ ⎞= ∇ ⋅ + − Ω⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

V V A

A

⋅
 (9) 

The conservative integrated governing equation for 
any scalar quantity φ  is written as 

⎞
⎟  (5)  

  ( )

,

g
d d d
dt

d S dφ

ρφ ρφ

μ φ

Ω ∂Ω

∂Ω Ω

Ω + −

= ∇ ⋅ + Ω

∫ ∫

∫ ∫

V V A

A

⋅
 (10) 
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where  is the control volume with the moving 
boundary, and  is the boundary of the control 
volume. Eq. (10) becomes the mass conservation equa-
tion when 

Ω
∂Ω

1φ =  and the momentum equations when 
uφ =  and vφ = . 

The grids are to be re-plotted at each new time step. 
Once the grids at the n time step and the newly de-
signed grids at the n+1 time step are known, we have 
the grid moving velocity gV  and  as well as 

 over the entire computational domain. The pa-
rameters at the previous n time step located in the grids 
of the n+1 time step can be interpolated via the values 
at the n time step. Thus the variable control volume 
problem of the first order backwind difference term for 
the partial differential term versus time and the moving 
velocity of the dynamic grids encountered in the con-
vective term in eq. (10) can be written as  

nΩ
1n+Ω

 
1( ) ( ) .

n nd d
dt t

ρφ ρφρφ
+

Ω

Ω − Ω
Ω =

Δ∫  (11) 

Thus for the present two-dimensional wing flapping 
motion, one mass and two momentum equations con-
sisting of three unknown variables  are closed, 
which can be solved under the given initial and bound-
ary conditions.  

( , , )u v p

2.2  The initial and boundary conditions 

Fig. 3 shows the computational domain with the 
wing as the internal boundary of the flow field. The 
dynamic velocity of the internal wall boundary can be 
obtained by differentiating eqs. (1)―(3) and decom-
posed on the X and Y coordinates into 

0 0 0 0 1 1( ) sin(2 )cos cos(2 )sin ,u t A f f t B f f tπ π β π π= − −
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β
(12)

0 0 0 0 1 1( ) sin(2 )sin cos(2 )cos ,v t A f f t B f f tπ π β π π= − + β
(13) 

 0 0( ) cos(2 ).
2

t f f tπω π π= ϕ+  (14) 

Eqs. (12)―(14) are the internal boundary conditions 
over the computational domain. The external boundary 
condition is set as the zero pressure reference to the 
environment pressure. The initial internal boundary 
condition can be obtained by setting eqs. (12)―(14) at 

 as 0t =
 0 1(0) sin ,u B fπ β= −  (15) 

 0 1(0) cos ,v B fπ β=  (16) 

 0(0) cos .
2

fπω π ϕ=  (17) 

Velocities are set at zero except on the internal wing 
boundary. The initial pressure is zero relative to the 
environment pressure. Eq. (10) is solved using 
SIMPLEC, second order up-wind numerical scheme. 
 

 
 

Fig. 3.  The grid structure over the entire computational domain. 

3  Results and discussion 

3.1  Validation of the numerical simulation 

Theoretically, the external boundaries should be in-
finitely far away from the flapping wing for the present 
external flow field problem. However, a real CFD 
modeling only considers a limited computational do-
main. Several computational domain sizes are used 
with its length of 5c, 10c and 15c to identify the size 
effect on the flight aerodynamics. It is shown that the 
CFD modeling results are not affected by the computa-
tional domain size as long as its length is larger than 
10c.  

Another issue is the grid quality. A preferred 
non-uniform grid system can be obtained by choosing 
suitable grid re-plotting parameters. Thus denser popu-
lated grids are arranged near the wing boundary and 
coarser grids are arranged far way from the wing (Fig. 
3). In such a way we can not only obtain the flow field, 
but also save the computation time. A gradual change in 
the control volume versus time during the grid regen-
eration process for a successive of time steps is ensured; 
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of 0.001―0.0025 N[9,20―23]. Thus the dragonfly can not 
only perform the normal flight but also has the maneu-
ver performance. These results validate the correct and 
reasonable trends of the present numerical simulations. 

thus the numerical simulation is stable. Totally 40000 
triangle grids are used over the entire computational 
domain. The use of the triangular grids is helpful for 
the grid re-plotting purpose (Fig. 3).  

In order to demonstrate the feasibility of the present 
numerical simulation, the computation results are 
compared with those of Wang[9] for a similar run case. 
The wing thickness to the chord ratio is not given in ref. 
[9] but it is set at 1/8. The lift/drag force coefficients 
attain the steady periodic variation after more than ten 
flapping cycles and the computation is stopped there. 
Fig. 4 shows very similar parameter trends of the 
lift/drag force coefficients versus time with only slight 
differences in the amplitudes for the present computa-
tions and those of Wang [9], which may be due to the 
different wing thicknesses to the chord ratio used in the 
two simulations. The lift force is the Y (vertical) com-
ponent of the composition of forces with positive Y 
coordinate, while the drag force is the X component of 
the composition of forces with positive X coordinate 
(Fig. 4). The negative drag force is actually the thrust 
force. For instance, the insect has the net thrust force if 
the average drag force over a flapping cycle period is 
negative for a fore flight insect. Assume that the ellipse 
wingspan is 5 cm and the wing width is 1 cm, the av-
erage lift force for the two pairs of wings is 0.0053 N 
using the computed average lift and drag forces over 
unit wingspan length of 0.034 N/m and 0.018 N/m, re-
spectively. Then the average lift force is larger than a 
typical dragonfly weight, which should be in the range 

For simplicity, the coefficients of lift/drag force, 
thrust force, and torque are defined as  

 20.5L
LiftC

V cρ
= , 20.5D

DragC
V cρ

= , 

 20.5T D
ThrustC C

V cρ
= = − , 2 20.5M

MomentC
V cρ

=  (18) 

where V  is the average flapping velocity over a flap-
ping cycle period, 0 02V f A= . 

3.2  Effect of different flapping trajectories 

Some authors have dealt with the translational flap-
ping trajectory for the insect aerodynamics without 
considering the horizontal deviation effect on the 
lift/drag force coefficients. However, the horizontal 
deviation indeed exists for the real insect flight[6,21,24]. 
In the present paper, based on the flapping frequency of 
the horizontal deviation, the wing flapping trajectories 
are divided into three groups: the ellipse, the fig-
ure-eight, and the double-figure-eight flapping (see sec. 
3.1 below). Generally insects have thin wings with the 
wing thickness-to-chord ratio being 1/20 and the phase 
difference of 0ϕ =  for the dragonfly species.  

The lift and drag force coefficients have the follow- 
ing common characteristics: the lift forces are mainly 

 
Fig. 4.  Comparisons of the present computed lift/drag coefficients with those of ref. [9]. The wing flapping cycle period T=0.025 s. 
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Fig.5. Comparisons of the lift/drag, torque coefficients for the translational and figure-eight flapping trajectories with the horizontal deviation of A0/10. 
 

provided during the wing downstroke and the drag 
forces are mainly coming from the wing upstroke (Fig. 
5 only illustrates the lift/drag force coefficients for the 
translational and figure-eight flapping trajectories). At 
the initial flapping position, the lift force coefficients 
are sharply increased, which is well consistent with the 
experimental measurements by Sane and Dickinson [6]. 
The maximum lift force coefficients are all beyond 5 
for the four flapping trajectories. They are even larger 
than 6 for the figure-eight and double-figure-eight flap-
ping trajectories, sufficiently larger than unity under the 
steady flight status. 

The lift/drag force coefficients are analyzed via 
comparisons of the figure-eight and the translational 
flapping trajectories. Fig. 5 shows that the larger aver-
age lift force coefficient is contributed by the higher 
dynamic value at the time t=0.25T and t=0.50T while 
the higher average thrust force coefficient is contrib-
uted by the higher dynamic value at the time t=0.75T 
for the figure-eight flapping trajectory than those for 
the translational one. For the figure-eight flapping mo-
tion, the wing is located at the center point during the 
downstroke flapping at t=0.25T. The vortices at the top 
surface of the wing leading-edge and trail-edge are lar-
ger for the figure-eight flapping motion than those for 
the translational one (Fig. 6(c)-1, 2), while the vortices 
are moving toward the wing trail-edge for the transla-
tional flapping mode. These effects cause the larger 
pressure difference between the top and bottom of the 
wing surfaces, leading to higher lift forces for the fig-
ure-eight flapping motion than those for the transla-
tional one (Fig. 6(c)-3,4). At this time, there exists 
smaller drag force difference for the two flapping mo-
tions, which is caused by the nearly zero X component 
of the composition of forces. From the kinematics point 
of view, there is an additional horizontal deviation ve-
locity leading to the nearly vertical downward direction 
of the velocity vector (Fig. 7, t=0.25T) for the fig- 
ure-eight flapping motion. Meanwhile, the veloc-

ity-induced drag force approaches the vertical upward 
direction, leading to the higher lift force. At t=0.5T, 
there is an additional horizontal deviation velocity 
along the Y coordinate in the xoy plane, which de-
creases the damping effect of the wing leading-edge on 
the leading-edge and trail-edge vortices of the top wing 
surface, leading to larger rotation velocity of the vor-
tices and enlarged low pressure area (Fig. 6(e)-3,4). 
Thus the lift/drag force coefficients are higher for the 
figure-eight flapping motion than the translational one. 
At t=0.75T, the wing is located at the center point of 
the upstroke flapping, the wing has higher pressure re-
gion on the up-edge (the right side of the wing, as 
shown in Fig. 6(g)-4), leading to the larger pressure 
area, hence larger fore thrust force for the figure-eight 
flapping motion than that for the translational one. At 
this time, there is a small lift force difference due to the 
vertical position of the wing. The Y component of the 
composition of forces approaches zero. 

Whether for the translation or figure-eight flapping 
trajectories, the leading-edge vortex is attached to the 
wing surface, leading to the maintained low pressure on 
the top wing surface (Fig. 8). This is one of the high lift 
force mechanisms [7,12] . Fig. 8 shows that the 
detachment of the leading-edge and trail-edge vortices 
is induced by the fast wing rotation with its direction 
inverse to the flapping velocity. The detachment of the 
vortices for various flapping modes has the same fre- 
quencies. The detachment of a pair of vortices corre- 
sponds to a flapping cycle. Fig. 8 shows the vortex 
streets for the straight-line and figure-eight flapping 
modes. The vortex street is slightly stronger for the fig- 
ure-eight than that for the straight-line flapping mode. 
Considering the insect and the gas as a single system, 
according to the momentum conservation principle, the 
higher the air flow rate and the larger velocity of the 
gas flowing downward, the larger the lift forces will be. 
Therefore, the lift/drag force coefficients are larger for 
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Fig. 6.  Comparisons of the vortices and pressure counters for the trans-
lational and figure-eight flapping trajectories. The first and second col-
umns are the vortices for the translational and figure-eight flapping 
trajectories, respectively. The third and fourth columns are the pressure 
counters for the translational and figure-eight flapping trajectories. The 
white color represents the high pressure while the black represents the 
low pressure. (a) t=0.0T (t=1.0T); (b) t=0.125T; (c) t=0.25T; (d) t=0.375T; 
(e) t=0.5T; (f) t=0.625T; (g) t=0.75T; (h) t=0.875T. 
 
the figure-eight than those for the straight-line flapping 
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mode. The vortices are detached in the direction of the 

right-downward. Thus, the compositions of the forces 
are in the direction of left-upward. 

 
Fig. 7.  The velocity composition at t=0.25T and t=0.50T for the fig-
ure-eight flapping motion of the wing. 

 

 
 

Fig. 8.  The vortex streets for the translational (left subfigure) and the 
figure-eight flapping trajectories (right subfigure). 

 
Table 1 lists the average lift/drag coefficients over a 

full cycle for the ellipse, figure-eight and the dou-
ble-figure-eight flapping trajectories for comparison 
with the available experimental measurements. With 
the horizontal deviation , the average lift 
force coefficient is increased by 24% and 76% for the 
ellipse flapping trajectory and the figure-eight flapping 
mode respectively, in comparison with the maximum 
lift coefficient under the steady flight motion. Among 
the three flapping modes shown in Table 1, the average 
lift force coefficients are smaller for the ellipse and 
double-figure-eight flapping modes than those for the 
figure-eight flapping mode. Meanwhile the average lift 
and drag force coefficients are greater for the fig-
ure-eight flapping mode than those for the straight-line 
one. For the ellipse flapping mode, the lift force coeffi-
cient is decreased with the increasing horizontal devia-
tion, which is well consistent with the experimental 
measurements by Sane and Dickinson

0 0 /10B A=

[6]. 
As shown in Table1, the loft/drag force coefficients 

are increased and then decreased with the continuous 
increasing horizontal deviation, which is not consistent 
with the results of Sane and Dickinson[6]. Ref. [6]
indicated that the lift/drag force coefficients are de- 
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creased with the increasing horizontal deviation for the 
figure-eight flapping trajectory. The above inconsis- 
tency maybe due to the use of different horizontal de- 
viation parameters. In the present paper, B0=A0/10 and 
BB0=A0/5 with the deviation angles less than 5°, while 
large horizontal deviations were used in Sane and 
Dickinson [6] . The experimental measurements also 
cannot mach the predictions by the quasi-steady model. 
This is because the quasi-steady theory cannot describe 
the flight aerodynamics with the figure-eight flapping 
trajectory.  

 
Table 1  The average lift/drag force coefficients for different flapping 

trajectories (BB0=0 represents no horizontal deviation motion, i.e. the 
translational flapping motion) 

 BB0=0.0 BB0=A0/10 BB0=A0/5 
CL 1.46 1.24 0.98 
CD −0.75 −0.93 −0.99 Ellipse 
CR 1.65 1.55 1.40 
CL 1.46 1.76 1.55 
CD −0.75 −0.88 −0.87 Figure-eight 
CR 1.65 1.97 1.77 
CL 1.46 1.43 1.11 
CD −0.75 −0.79 −0.70 Double-figure-eight 
CR 1.65 1.64 1.32 

4  Conclusions 
Via the present numerical simulations it is found that 

the insect lift/drag force coefficients are greatly influ- 
enced by the flapping trajectories. By analyzing the 
ellipse, straight-line, figure-eight and double-figure- 
eight flapping trajectories, the maximum lift force coef- 
ficients are shown to exceed five, which are sufficiently 
larger than unity under the steady state flight condition. 
The ellipse and double-figure-eight flapping trajectories 
causes the lift force to be lower than the translational 
flapping one. The present study of the flapping trajec- 
tories on the insect aerodynamics is helpful for the de- 
sign of the Micro-air-vehicles (MAVs). 
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