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PERFORMANCE ANALYSIS OF IDEAL ALGORITHM
COMBINED WITH Bi-CGSTAB METHOD

D. L. Sun1, Y. P. Yang1, J. L. Xu1, and W. Q. Tao2
1Beijing Key Laboratory of New and Renewable Energy, North China
Electric Power University, Beijing, People’s Republic of China
2School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an,
Shaanxi, People’s Republic of China

An efficient segregated algorithm for fluid flow and heat transfer problems, called IDEAL,

was proposed D. L. Sun et al. [11]. In addition, the IDEAL algorithm was extended to 2-D/

3-D grid systems. In these IDEAL algorithms, all of the algebraic equations are solved by

the alternating-direction implicit (ADI) method, called the IDEALþADI method. In this

article, the efficient Bi-CGSTAB method is adopted instead of the ADI method to solve

the algebraic equations in the IDEAL algorithm, called the IDEALþBi-CGSTAB method.

It is found that the IDEALþBi-CGSTAB method is much better than the IDEALþADI

method to solve open systems but little worse to solve closed systems.

1. INTRODUCTION

Numerical approaches to solve the Navier-Stokes equations can be divided
into two categories [1, 2]: density-based and pressure-based. The pressure-based
approach, or the primitive-variables approach, was originally developed for solving
incompressible fluid flows, but it has been successfully extended to compressible
flows. It has been widely used in computational fluid flow and heat transfer pro-
blems. Among the pressure-based approaches, the pressure-correction method is
the most widely used one because of its simplicity and straightforward physical
mechanism point of view. The first pressure-correction method was the SIMPLE
algorithm, proposed by Patankar and Spalding in 1972 [3]. The major approxima-
tions made in the SIMPLE algorithm are that (1) the initial pressure field and velo-
city field are assumed independently, thus the coupling between pressure and velocity
is neglected; and (2) effect of the velocity corrections of the neighboring grids is not
considered to simplify the solution procedure, leading to the semi-implicit nature of
the algorithm. The two approximations do not influence the final solutions if the
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solution process is converged [4], but they affect the convergence rate and stability of
the solution. Therefore, since the development of the SIMPLE algorithm, a number
of modified methods, such as SIMPLER [5], SIMPLEC [6], SIMPLEX [7], PISO [8],
CLEAR [9, 10], etc., have been proposed in order to overcome one or both of the
approximations. Unlike other algorithms, in order to obtain an incompressible flow
field which satisfies the mass conservation law, the CLEAR algorithm does not intro-
duce a pressure correction. The algorithm improves the intermediate velocity by
solving a pressure equation to make the algorithm fully implicit, since no term is
omitted in the derivation process. However, the robustness of the CLEAR algorithm
is somewhat weakened by solving the pressure equation directly. To overcome this
disadvantage, the IDEAL algorithm (Inner Doubly iterative Efficient Algorithm
for Linked equations) was proposed in [11, 12]. In this algorithm there exist inner
doubly iterative processes for the pressure equation at each iteration level, which
almost completely resolves the two approximations in the SIMPLE algorithm. Thus
the coupling between velocity and pressure is fully guaranteed, greatly enhancing the
convergence rate and stability of the solution process. Recently, the IDEAL algor-
ithm was extended to the staggered grid system [13] and the collocated grid system
in 3-D Cartesian coordinates [14].

In these IDEAL algorithms, all of the algebraic equations, formed by discretiz-
ing governing equations, were solved by the alternative-direction implicit (ADI)
method [15], called the IDEALþADI method. The ADI method needs less comput-
ing memory but has low solution speed. Because it uses less computer resources, the
ADI method has been widely used. With the development of the computer industry,

NOMENCLATURE

a coefficient in the discretized

equation

A surface area, nonzero diagonal

A coefficient matrix

b constant term in the discretized

equation

d coefficient in the velocity-

correction equation

E time-step multiple

N1, N2 inner doubly iterative times

p pressure

qm reference mass flow rate

Re Reynolds number

RsMass relative maximum mass residual

RsUMom,

RsVMom,

RsWMom

relative maximum u-, v-, w-

component momentum residuals

S source term

T temperature

u, v, w velocity component in x, y, z

directions

~uu; ~vv; ~ww pseudo-velocity

x, y, z coordinates

a underrelaxation factor

C nominal diffusion coefficient

g dynamic viscosity

n kinematic viscosity

q density

/ general variable

Subscripts

e, w, n, s, t, b cell surface

in inlet

nb neighboring grid points

P, E, N, S,

W, T, B

grid point

u, v, w referring to u, v, w momentum

equation

/ general variable

Superscripts

PTemp temporary value in previous

inner iteration step

Temp temporary value in current inner

iteration step

0 previous iteration

* intermediate value in iteration
0 correction
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more efficient methods for solving algebraic equations are needed. Krylov subspace
methods [16], representing an advanced technique for solving algebraic equations,
have been the most important iteration technique for solving large linear systems
because of its fast solution speed. Krylov subspace methods include methods such
as Bi-CGSTAB [17, 18], GMRES(m) [19], CGS [20], TFQMR [21], QMR [22],
etc., which were compared with each other in [23]. It was found that the Bi-CGSTAB
method is much more stable and more efficient among all the methods. In this arti-
cles, the Bi-CGSTAB method is used instead of the ADI method to solve the
algebraic equations in the IDEAL algorithm.

For linear problems, the algebraic equations are solved only once, so the sol-
ution speed by the Bi-CGSTAB method is about 50 times faster than that by the
ADI method. The advantage of the Bi-CGSTAB method over the ADI method is
verified by simulating a 3-D heat conduction problem. The governing equation
and the boundary conditions for the problem studied are as follows:

q2T
qx2

þ q2T
qy2

þ q2T
qz2

¼ 0 ð0 < x < 10; 0 < y < 10; 0 < z < 10Þ

Tð0; y; zÞ ¼ 0 Tð10; y; zÞ ¼ 0

qTðx; 0; zÞ
�
qy ¼ 0 qTðx; 10; zÞ

�
qy ¼ 0

Tðx; y; 0Þ ¼ 0 Tðx; y; 10Þ ¼ 100

ð1Þ

Equation (1) is solved analytically [24] and by the numerical schemes ADI and
Bi-CGSTAB. The grid number 80� 80� 80 is included in the numerical simulations.
Figure 1 shows the computed temperature at the plane y¼ 5 using different methods.
It is found that the temperature fields simulated by the ADI and Bi-CGSTABmethods
agree very well with that by the analytical solution, proving the validity of the ADI
and Bi-CGSTAB methods. For this specific problem, the solution speed by the
Bi-CGSTAB method is 40 times faster than that by the ADI method, showing the
advantage of the Bi-CGSTAB method for the linear heat transfer problem studied.

For nonlinear fluid flow and heat transfer problems, the simulation is
performed by iteration. At each iteration step, the algebraic equations are solved
with updated coefficients. The solution is the intermediate temporary value. Thus

Figure 1. Temperature at the plane y¼ 5 calculated by different methods.
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the convergence rate of nonlinear problems depends on both the solution speed of the
algebraic equations and the stability of the iteration process. It is not certain that
the Bi-CGSTAB method is superior to the ADI method for nonlinear problems.
The objective of the present article is to verify the effectiveness of the Bi-CGSTAB
method. Four nonlinear fluid flow problems, two for open systems and two for
closed systems, are simulated by the IDEALþBi-CGSTAB method and the
IDEALþADI method using a 3-D staggered grid system.

This article is organized as follows. The governing equations and their discre-
tization forms are described first. The major solution procedures of the IDEAL
algorithm and the ADI=Bi-CGSTAB methods are briefly reviewed. A systemic com-
parison between the IDEALþADI method and the IDEALþBi-CGSTAB method is
performed, focusing on the robustness and convergence rate of these numerical
schemes. The major conclusions are summarized at the end of the article.

2. GOVERNING EQUATIONS

We gave the governing equations and their discretization forms. An incom-
pressible steady laminar flow in 3-D Cartesian coordinates is taken as an example.
The governing equations are written as follows.

Continuity equation:

qðquÞ
qx

þ qðqvÞ
qy

þ qðqwÞ
qz

¼ 0 ð2Þ

Momentum equation:

qðquuÞ
qx

þ qðqvuÞ
qy

þ qðqwuÞ
qz

¼ � qp
qx

þ g
q2u
qx2

þ q2u
qy2

þ q2u
qz2

 !
þ Su ð3Þ

qðquvÞ
qx

þ qðqvvÞ
qy

þ qðqwvÞ
qz

¼ � qp
qy

þ g
q2v
qx2

þ q2v
qy2

þ q2v
qz2

 !
þ Sv ð4Þ

qðquwÞ
qx

þ qðqvwÞ
qy

þ qðqwwÞ
qz

¼ � qp
qz

þ g
q2w
qx2

þ q2w
qy2

þ q2w
qz2

 !
þ Sw ð5Þ

Figure 2. Control volumes on a staggered grid system in 3-D Cartesian coordinates.
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The finite-volume method (FVM) [4, 25] is used to discretize the continuity and
momentum equations on the staggered grid system, which is shown in Figure 2.

The discretized continuity equation is

ðquÞeAe � ðquÞwAw þ ðqvÞnAn � ðqvÞsAs þ ðqwÞtAt � ðqwÞbAb ¼ 0 ð6Þ

The discretized momentum equation is

ae
au

ue ¼
X

anbunb þ be þ deðpP � pEÞ ð7Þ
an
av

vn ¼
X

anbvnb þ bn þ dnðpP � pNÞ ð8Þ
at
aw

wt ¼
X

anbwnb þ bt þ dtðpP � pTÞ ð9Þ

where the underrelaxation factor a is incorporated into the solution process of
the algebraic equations. The terms ð1� auÞaeu0e=au, ð1� avÞanv0n=av, and
ð1� awÞatw0

t =aw are incorporated into the source terms be, bn, and bt, respectively.
The coefficients a and source terms b depend on the discretized schemes, which
are well documented in [4, 25, 26], and are thus not repeated here.

3. SOLUTION PROCEDURE OF THE IDEAL ALGORITHM

The IDEAL algorithm was proposed for incompressible fluid flow and
heat transfer problems using the staggered grid system in 3-D Cartesian coordinates
in [13]. The major points of the IDEAL algorithm are reviewed here. Figure 3

Figure 3. Framework of the solution process of the IDEAL algorithm.
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shows the detailed framework of the IDEAL algorithm, which is summarized as
follows.

Step 1. Assume an initial velocity field u0, v0, and w0.
Step 2. Calculate the coefficients a and source terms b of the discretized momentum

equations (7)–(9), using the initial velocity field.

First inner iteration process for pressure question.

Step 3. Calculate the pseudo-velocities ~uu0, ~vv0, and ~ww0 defined in Eqs. (10)–(12).

uTemp
e ¼

P
anbu

0
nb þ be

ae=au
þ de pTemp

P � pTemp
E

� �
¼ ~uu0e þ de pTemp

P � pTemp
E

� �
ð10Þ

vTemp
n ¼

P
anbv

0
nb þ bn

an=av
þ dn pTemp

P � pTemp
N

� �
¼ ~vv0n þ dn pTemp

P � pTemp
N

� �
ð11Þ

wTemp
t ¼

P
anbw

0
nb þ bt

at=aw
þ dt pTemp

P � pTemp
T

� �
¼ ~ww0

t þ dt pTemp
P � pTemp

T

� �
ð12Þ

Step 4. Solve the pressure equation (13), and obtain the temporary pressure pTemp.

aP
ap

pTemp
P ¼

X
anbp

Temp
nb þ b

aP ¼ aE þ aW þ aN þ aS þ aT þ aB

aE ¼ ðqAdÞe; aW ¼ ðqAdÞw; aN ¼ ðqAdÞn
aS ¼ ðqAdÞs; aT ¼ ðqAdÞt; aB ¼ ðqAdÞb
b ¼ ðq~uu0AÞw � ðq~uu0AÞe þ ðq~vv0AÞs � ðq~vv0AÞn þ ðq~ww0AÞb � ðq~ww0AÞt

þ ð1� apÞ
aP
ap

p
PTemp
P

ð13Þ

Equation (13) is obtained by substituting Eqs. (10)–(12) into the discretized conti-
nuity equation (6).

Step 5. Calculate the temporary velocities uTemp, vTemp, and wTemp from Eqs. (10)–
(12) by the temporary pressure pTemp. Then the first inner iteration step is
completed and the next inner iteration step starts.

Step 6. Record uTemp, vTemp,wTemp, and pTemp, which are calculated in steps 4 and 5, as
the temporary velocity and pressure of the previous inner iteration step (uPTemp,
vPTemp, wPTemp, and pPTemp). Return to step 3, in which all the superscripts 0
in steps 3 and 4 are replaced by PTemp. Thus the values of ~uu0, ~vv0, and ~ww0 are
updated. Then the pressure equation (13) is resolved. Repeat the iteration pro-
cess, including steps 3, 4, and 5, until the iteration times equals to the prespecified
value of N1. Once the first inner iteration process for the pressure equation is
completed, the final temporary pressure pTemp is treated as the initial pressure p�.

Step 7. Solve the discretized momentum equations (7)–(9) by the initial velocity and
pressure p�, and obtain the intermediate velocities u�, v�, and w�.
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Second inner iteration process for pressure question.

Step 8. Calculate the pseudo-velocities ~uu�, ~vv�, and ~ww� defined in Eqs. (14)–(16).

uTemp
e ¼

P
anbu

�
nb þ be

ae=au
þ deðpTemp

P � pTemp
E Þ ¼ ~uu�e þ deðpTemp

P � pTemp
E Þ ð14Þ

vTemp
n ¼

P
anbv

�
nb þ bn

an=av
þ dnðpTemp

P � pTemp
N Þ ¼ ~vv�n þ dnðpTemp

P � pTemp
N Þ ð15Þ

wTemp
t ¼

P
anbw

�
nb þ bt

at=aw
þ dtðpTemp

P � pTemp
T Þ ¼ ~ww�

t þ dtðpTemp
P � pTemp

T Þ ð16Þ

Step 9. Solve the pressure equation (17), and obtain the temporary pressure pTemp.

aPp
Temp
P ¼

X
anbp

Temp
nb þ b

aP ¼ aE þ aW þ aN þ aS þ aT þ aB

aE ¼ ðqAdÞe; aW ¼ ðqAdÞw; aN ¼ ðqAdÞn
aS ¼ ðqAdÞs; aT ¼ ðqAdÞt; aB ¼ ðqAdÞb
b ¼ ðq~uu�AÞw � ðq~uu�AÞe þ ðq~vv�AÞs � ðq~vv�AÞn þ ðq~ww�AÞb � ðq~ww�AÞt

ð17Þ

Step 10. Calculate the temporary velocities uTemp, vTemp, and wTemp from Eqs. (14)–
(16) by the temporary pressure pTemp. Then an inner iteration step is finished
and the next inner iteration step begins.

Step 11. Regard uTemp, vTemp, wTemp, and pTemp calculated in steps 9 and 10 as the
temporary velocity and pressure of the previous inner iteration step, denoted
by uPTemp, vPTemp, wPTemp, and pPTemp. Return to step 8. All the superscripts
� in steps 8 and 9 are replaced by PTemp, thus the values of ~uu�, ~vv�, and ~ww�

are updated. Resolve the pressure equation (17). Repeat the iteration, including
steps 8, 9, and 10, until the iteration times equals the prespecified value N2.
Once the second inner iteration process for the pressure equation is finished,
the final temporary velocities uTemp, vTemp, and wTemp are taken as the final
velocities u, v, and w of the current iteration level.

Step 12. Regard the final velocities u, v, and w as the initial velocities u0, v0, and w0 of
the next iteration level, then return to step 2 for the next iteration level. Repeat
the iterative procedure until convergence is reached.

In the IDEAL algorithm, the first inner iteration times N1 and the second inner
iteration times N2 can be adjusted. N1 and N2 should be increased with an increase
of the velocity underrelaxation factor.

4. THE ADI AND BI-CGSTAB METHODS

During the solution process in the IDEAL algorithm, all the algebraic equa-
tions, including the discretized pressure equation (13) in step 4, the discretized
momentum equations (7)–(9) in step 7, and the discretized pressure equation (17)
in step 9, will be solved. The general expression form of these discretized
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equations (7)–(9), (13), and (17) is written as

aP/P ¼ aE/E þ aW/W þ aN/N þ aS/S þ aT/T þ aB/B þ b ð18Þ

The matrix form is

A~// ¼ ~BB ð19Þ

where the matrix A is expressed as

In Eq. (20), the seven nonzero diagonals AP, AE, AW, AN, AS, AT, and AB consist of
the coefficients aP, �aE, �aW, �aN, �aS, �aT, and �aB.

The algebraic equations will be solved using the two methods, ADI and
Bi-CGSTAB, which are described as follows.

4.1. The ADI Method

The alternative-direction implicit (ADI) method is one of the line-by-line
methods. One round of iteration of the ADI method to solve Eq. (18) consists of
the following three steps.

Step 1. Solve / along the x coordinate by the tridiagonal matrix algorithm (TDMA)
method [25], which is performed for all the x coordinates.

aP/
nþ1=3
P ¼ aE/

nþ1=3
E þ aW/nþ1=3

W þ ðaN/n
N þ aS/

n
S þ aT/

n
T þ aB/

n
B þ bÞ ð21Þ

Step 2. Solve / along the y coordinate, which is performed for all the y coordinates.

aP/
nþ2=3
P ¼ aN/

nþ2=3
N þ aS/

nþ2=3
S þ ðaE/nþ1=3

E þ aW/nþ1=3
W þ aT/

nþ1=3
T

þ aB/
nþ1=3
B þ bÞ

ð22Þ

Step 3. Solve / along the z coordinate, which is performed for all the z coordinates.

aP/
nþ1
P ¼ aT/

nþ1
T þ aB/

nþ1
B þ ðaE/nþ2=3

E þ aW/nþ2=3
W þ aN/

nþ2=3
N þ aS/

nþ2=3
S þ bÞ

ð23Þ
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4.2. The Bi-CGSTAB Method

The seven nonzero diagonals of matrix A in Eq. (20) are written as

entryðAÞ ¼ ðAB;AS;AW ;AP;AE ;AN ;ATÞ ð24Þ
where the seven entries represent the elements occupying the seven nonzero diago-
nals of the original coefficient matrix A.

We use the MILU method [27] to precondition the matrix A. The precondi-
tioner M is defined as

M ¼ LDU ð25Þ

The matrix entries of L, D, and U are written as

entryðLÞ ¼ AS; AW;
1

DP
; 0; 0

� �
entryðDÞ ¼ ð0; 0;DP; 0; 0Þ

entryðUÞ ¼ 0; 0;
1

DP
;AE; AN

� � ð26Þ

where DP is computed as

DP
I ;J ¼ 1

AP
I ;J �DP

I�1;JA
W
I ;JðAE

I�1;J þ aAN
I�1;JÞ �DP

I ;J�1A
S
I ;JðAN

I ;J�1 þ aAE
I ;J�1Þ

ð27Þ

where a is set to be 0.99.
Based on the preconditioner M, the procedure of the Bi-CGSTAB method to

solve Eq. (19) is as follows.

Step 1. /0
�!

is an initial vector; r0
!

¼ ~BB� A /0
�!

.

Step 2. r0
!

is an arbitrary vector, such that ð r0
!
; r0
!
Þ 6¼ 0, e.g., r0

!
¼ r0

!
; q0¼ a¼x0¼ 1;

v0
!

¼ p0
!

¼ 0.

Step 3. For n¼ 1, 2, . . . until rn
!

< tolerance, qn ¼ ð r0
!
; rn�1
��!

Þ; b ¼ ðqn=qn�1Þ=
ða=xn�1Þ; pn

!¼ rn�1
��!

þ bðpn�1
��!

� xn�1vn�1
��!

Þ.
Solve ~yy from M~yy ¼ p00

!
; vn
!¼ A~yy; a ¼ qn=ð r0

!
; vn
!Þ; ~ss ¼ rn�1

��!
� avn

!
.

Solve~zz from M~zz ¼~ss; ~tt ¼ A~zz; ~tt ¼ A~zz; xn ¼ ð~tt;~ssÞ=ð~tt;~ttÞ.
Then the new vector is /n�! ¼ /n�1

��!
þ a y!þ xn~zz; rn

!¼~ss� xn~tt.

5. COMPARISON CONDITIONS AND CONVERGENCE CRITERIA

In order to perform effective comparisons between the IDEALþADI and
IDEALþBi-CGSTAB methods, numerical simulation conditions and convergence
criteria should be specified, which are described as follows.

Hardware and software. All the simulations are performed using a computer
with a 2.51-GHz CPU with 2.0 GB RAM along with a FORTRAN 77 compiler.

Discretization scheme. In order to guarantee the stability and accuracy of
the numerical solution, the SGSD scheme [28] is adopted, which is at least of
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second-order accuracy and absolutely stable. The deferred-correction method is
adopted to ensure the stability of the computations, which was proposed in [29]
and latter improved in [30].

Iteration times of the ADI and Bi-CGSTAB methods. For nonlinear fluid
flow and heat transfer problems, the iteration process was performed. At each
iteration level, the algebraic equations with updated coefficients should be solved,
and the solution is only the intermediate temporary value in the iteration process.
So it is not necessary to reach a convergent solution at each iteration level. Therefore,
both the iteration times of the ADI method and the Bi-CGSTAB method are set to
be 1.

Underrelaxation factor. In the IDEAL algorithm the underrelaxation factor
aP for pressure is set to be unity, and the underrelaxation factors are the same for the
three velocity components of u, v, w, i.e., au¼ av¼ aw. The time-step multiple E is
defined in Eq. (28) as

E ¼ au;v;w
1� au;v;w

ð0 < au;v;w < 1Þ ð28Þ

The relationship between au,v,w and E is shown in Table 1. It is seen that the
range of the time-step multiple is significantly enlarged using Eq. (28). E approaches
infinity when the underrelaxation factor approaches unity.

Grid system. The same uniform grid system is used for both the IDEALþ
ADI method and the IDEALþBi-CGSTAB method, which will be shown later.

Convergence criteria. The convergence criteria require that both the relative
maximum residuals of mass and momentum with respect to the three velocity
components of u, v, w are less than the prespecified values.

The relative maximum mass residual is expressed as

RsMass ¼
MAX jðqu�AÞw � ðqu�AÞe þ ðqv�AÞs � ðqv�AÞn þ ðqw�AÞb � ðqw�AÞtj

� �
qm

ð29Þ

where u�, v�, and w� are the intermediate velocities at each iteration level and qm is
the reference mass flow rate. For open systems, the inlet mass flow rate is treated as
the reference value. For closed systems, the mass flow rate is integrated over any
section of the flow field and this value is regarded as the reference value [25].

The relative maximum momentum residuals with respect to the three velocity
components of u, v, w are

RsUMom ¼
MAX aeu

0
e �

P
nb anbu

0
nb þ bþ AeðpP � pEÞ

� �		 		
 �
qu2m

ð30Þ

Table 1. Some correspondences between au,v,w and E

au,v,w 0.1 0.5 0.9 0.95 0.96 0.97 0.98 0.99 1

E 0.111 1 9 19 24 32.3 49 99 infinite
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RsVMom ¼
MAX anv

0
n �

P
nb anbv

0
nb þ bþ AnðpP � pNÞ

� �		 		
 �
qu2m

ð31Þ

RsWMom ¼
MAX atw

0
t �

P
nb anbw

0
nb þ bþ AtðpP � pTÞ

� �		 		
 �
qu2m

ð32Þ

where u0, v0, and w0 are the initial velocities at each iteration level and qu2m is the
reference momentum. For open systems, the inlet momentum is taken as the refer-
ence value. For closed systems, the momentum is integrated over any section in
the flow field to achieve the reference value [25].

Double-precision computations. Double precision is adopted to reduce the
truncation error and numerical noise.

6. NUMERICAL COMPARISONS

Four problems were studied using both the IDEALþADI method and the
IDEALþBi-CGSTAB method:

Problem 1: Laminar flow over a backward-facing step
Problem 2: Laminar flow through a duct with a complicated structure
Problem 3: Lid-driven cavity flow in a cubic cavity
Problem 4: Lid-driven cavity flow in a cubic cavity with a complicated structure

Problems 1 and 2 refer to open systems; Problems 3 and 4 refer to closed
systems. The assumptions involved in these problems are: laminar, incompressible,
steady-state, and constant physical properties of fluid.

6.1. Problems of Open Systems

Problem 1: Laminar flow over a backward-facing step. The configuration
shown in Figure 4 is a simple open system, which has been widely used as a typical
configuration in computational fluid dynamics study. The domain extension method
[25] is used to deal with the solid step, i.e., the solid step is assumed to be a fluid with
sufficiently high viscosity, thus numerical computations are performed over the
whole region 2H� 8H� 25H.

Calculations are conducted for Re¼ 100–300 and grid number¼ 127� 32� 63.
The inflow velocity distribution is cited from Shah and London [31], and the fully
developed boundary condition is used at the outflow boundary. The residuals
RsMass, RsUMom, RsVMom, and RsWMom are all set to be less than 10�7. The Reynolds
number is defined by

Re ¼ uinH

n
ð33Þ

Figure 5 shows the reattachment length (i.e., LR) on plane z¼ 4H, computed by
the IDEALþADI method and the IDEALþBi-CGSTAB method, and cited from [32].
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The two computed results by the IDEALþADImethod and the IDEALþBi-CGSTAB
method agree very well with those cited from [32], verifying the reliability of the
IDEALþADI method, the IDEALþBi-CGSTAB method, and the developed code.

Figures 6 and 7 show the computation time and robustness of the
IDEALþADI and IDEALþBi-CGSTAB methods for different Reynolds numbers
in Problem 1. The inner iteration times N1 and N2 in the IDEAL algorithm are dis-
played in these figures. Different N1 and N2 are adopted corresponding to different
ranges of time-step multiples. For example, as shown in Figure 6, N1 and N2 of the
IDEALþADI method for different time-step multiple ranges are 1 and 1, 4 and 4,
and 5 and 5, respectively. N1 and N2 of the IDEALþBi-CGSTAB method are 1
and 1, 2 and 2, 4 and 4, 6 and 6, 8 and 8, and 12 and 12, respectively.

Four features can be seen from Figures 6 and 7:

1. N1 and N2 are increased with the increase of time-step multiples for the
IDEALþADI method and the IDEALþBi-CGSTAB method.

Figure 5. Predicted reattached length LR on plane z¼ 4H.

Figure 4. Flow configuration of laminar fluid flow over a backward-facing step.
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2. The convergence rate of the IDEALþBi-CGSTAB method is faster than that of
the IDEALþADI method for small time-step multiples, but the two methods
have nearly the same convergence rates for large time-step multiples.

3. The computation time of the IDEALþBi-CGSTAB method is decreased by 38%
for Re¼ 100 and by 27% for Re¼ 300, over the IDEALþADI method.

Figure 6. Comparison of computation time and robustness of IDEALþADI and IDEALþBi-CGSTAB

methods for Re¼ 100 with grid number¼ 127� 32� 63 for Problem 1.

Figure 7. Comparison of computation time and robustness of IDEALþADI and IDEALþBi-CGSTAB

methods for Re¼ 300 with grid number¼ 127� 32� 63 for Problem 1.
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4. The IDEALþADI method can be converged over a very wide range of time step
multiples, but the IDEALþBi-CGSTAB method may not converge at very large
time-step multiples, such as E> 100. In addition, the IDEALþBi-CGSTAB
method needs larger iteration times of N1 and N2 than the IDEALþADI method
to get convergent results.

It is noted that the IDEALþBi-CGSTAB method is still more robustess than
the SIMPLERþADI, PISOþADI, and SIMPLECþAD methods (see Figure 13 in
[13]). On the whole, the IDEALþBi-CGSTAB method has better performance than
the IDEALþADI method for open systems.

Problem 2: Laminar flow through a duct with complicated structure.
Problem 2 deals with an intricate open system. Figure 8 shows the flow configur-
ation, with three blocks of baffle plates inserted in the duct. The three solid blocks
are treated by the domain extension method.

Figure 8. Flow configuration of laminar fluid flow through a duct with complicated structure.

Figure 9. Comparison of computation time and robustness of IDEALþADI and IDEALþBi-CGSTAB

methods for Re¼ 100 with grid number¼ 150� 20� 20 for Problem 2.
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Calculations are conducted for Re¼ 100–300, grid number¼ 150� 20� 20.
The inflow velocity is uniform, and the fully developed boundary condition is used
at the outflow. The residuals RsMass, RsUMom, RsVMom, and RsWMom are set to be
less than 10�7. The Reynolds number is defined as

Re ¼ uinH

n
ð34Þ

Figures 9 and 10 show the computation time versus the time-step multiples for
the IDEALþADI method and the IDEAL þBi-CGSTAB method at different Rey-
nolds numbers. It is seen from Figures 9 and 10 that the IDEALþBi-CGSTAB
method significantly reduces the computation time. The computation time of the
IDEALþBI-CGSTAB method is reduced by 83% at Re¼ 100 and by 80% at
Re¼ 300, compared with the IDEALþADI method. The ranges of time-step multi-
ples that can sustain the convergent solution are nearly the same using the two
methods. Both methods are more robust than the SIMPLERþADI, PISOþADI,
and SIMPLECþADI methods (see Figure 16 in [13]).

Incorporating Problem 1, we conclude that the IDEALþBi-CGSTAB method
has much faster convergence rate than the IDEALþADI method. The robustness is
nearly the same for both methods, or it is slightly weakened for the
IDEALþBi-CGSTAB method. Both methods are superior to those that have been
reported in the literature.

6.2. Problems of Closed Systems

Problem 3: Lid-driven cavity flow in a cubic cavity. This problem has
served as a benchmark CFD=NHT problem to test numerical methods for

Figure 10. Comparison of computation time and robustness of IDEALþADI and IDEALþBi-CGSTAB

methods for Re¼ 300 with grid number¼ 150� 20� 20 for Problem 2.
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three-dimensional fluid flows [33–35]. Figure 11 shows the flow configuration. Calcu-
lations are conducted for Re¼ 100–1,000 and grid number¼ 82� 82� 82. The resi-
duals of RsMass, RsUMom, RsVMom, and RsWMom are smaller than 10�8. The
Reynolds number is defined as

Re ¼ ulidH

n
ð35Þ

Figure 12 illustrates the velocity profiles along the centerlines on the plane
z¼ 0.5H. The velocity profiles computed by both the IDEALþBi-CGSTAB method
and the IDEALþADI method are in excellent agreement with those reported by
Tang et al. [35].

Figure 11. Flow configuration of lid-driven cavity flow in a cubic cavity.

Figure 12. Comparison of velocity profiles u and v along the central axes on plane z¼ 0.5H for Re¼ 1,000.
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Figures 13 and 14 show the computation time versus the time-step multiple E
using the IDEALþBi-CGSTAB and IDEALþADI methods for different Reynolds
numbers. Generally, the difference in computation time using the two methods is not
large. The curves of computation time versus time-step multiple are crossed by the
two methods, i.e., the computation time of the IDEALþBi-CGSTAB method is

Figure 13. Comparison of computation time and robustness of IDEALþADI and IDEALþBi-CGSTAB

methods for Re¼ 100 with grid number¼ 82� 82� 82 for Problem 3.

Figure 14. Comparison of computation time and robustness of IDEALþADI and IDEALþBi-CGSTAB

methods for Re¼ 1,000 with grid number¼ 82� 82� 82 for Problem 3.
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occasionally larger, but occasionally smaller, than that of the IDEALþADI method.
Another finding is that the range of the time-step multiple is narrowed by
IDEALþBi-CGSTAB method, showing the weakened robustness of the IDEALþ
Bi-CGSTAB method, compared with the IDEALþADI method.

Problem 4: Lid-driven cavity flow in a cubic cavity with complicated
structure. This problem refers to a complicated closed system. Figure 15 shows
the flow configuration, with three blocks of baffle plates inserted in the cubic cavity.
Again, the three solid blocks are treated by the domain extension method.

Figure 15. Flow configuration of lid-driven cavity flow in a cubic cavity with complicated structure.

Figure 16. Comparison of computation time and robustness of IDEALþADI and IDEALþBi-CGSTAB

methods for Re¼ 100 with grid number¼ 52� 52� 52 for Problem 4.
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Calculations are conducted for Re¼ 100–500 and grid number¼ 52� 52� 52.
The residuals RsMass, RsUMom, RsVMom, and RsWMom are smaller than 10�8. The
Reynolds number is defined as

Re ¼ ulidH

n
ð36Þ

As shown in Figure 16, the IDEALþBi-CGSTAB method needs less
computation time than the IDEALþADI method at Re¼ 100, but the curves of
computation time versus time-step multiple are crossed between the two methods
at Re¼ 500 (see Figure 17). As shown in Figures 16 and 17, the range of the time-
step multiple to reach the convergent solution is shortened by the IDEALþ
Bi-CGSTAB method, showing the inferior performance of the IDEALþ
Bi-CGSTAB method.

7. CONCLUSIONS

In this article, four three-dimensional incompressible fluid flow problems have
been examined by the methods of IDEALþBi-CGSTAB and IDEALþADI. The
conclusions are summarized as follows.

1. For open systems, the IDEALþBi-CGSTAB method reduces the computation
time to reach the convergent solution by 27–83%, compared with the
IDEALþADI method. The range of the time–step multiple may be slightly nar-
rower for the IDEALþBi-CGSTAB than for the IDEALþADI method, showing
slightly weakened robustness of the IDEALþBi-CGSTAB method. Generally,

Figure 17. Comparison of computation time and robustness of IDEALþADI and IDEALþBi-CGSTAB

methods for Re¼ 500 with grid number¼ 52� 52� 52 for Problem 4.
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the IDEALþBi-CGSTAB method is better than the IDEAlþADI method to
simulate open systems.

2. For closed systems, depending on the Reynolds number, the curves of compu-
tation time versus time-step multiple may be crossed between the two methods,
or the IDEALþBi-CGSTAB method reduces the computation time, compared
with the IDEALþADI method. The range of the time-step multiple is narrowed
by the IDEALþBi-CGSTAB method. In summary, the IDEALþBi-CGSTAB
method is inferior to the IDEALþADI method.
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