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An efficient segregated algorithm for non-linear incompressiblefluid flowand heat transfer problems, called
IDEAL (Inner Doubly-Iterative Efficient Algorithm for Linked-Equations) for short, was proposed in
reference [9]. Subsequently, it was extended to the 3D staggered/collocated grid systems. IDEAL includes
inner doubly-iterative processes for solving pressure equations at each iteration level, and it could adjust the
inner iteration times to control the convergence rate and the stability of iteration process, which is greatly
different from other segregated algorithms. The objective of this paper is to analyze the effects of inner
iteration times on the performance of IDEAL by four incompressible fluid flow problems, two of which
belong to open systems, and the others refer to closed systems. It is found that: (1) the robustness of IDEAL is
enhanced greatly with the increase of inner iteration times; (2) at the same time step multiple, the outer
iteration number decreases with the increase of inner iteration times and the computation time is not
related to the inner iteration times; (3) at the optimal time step multiple, the large inner iteration times of
4&4 and 7&7 could reduce the outer iteration number by about 70% and the computation time by about 40%
over the small inner iteration times of 1&1.
l rights reserved.
© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In 1972 the first pressure-correction method, SIMPLE, was
proposed by Patankar and Spalding [1]. The major approximations
of SIMPLE are: (1) the initial pressure field and velocity field are
assumed independently; (2) the effect of velocity corrections of
the neighboring grids is not considered to simplify the solution
procedure. These two approximations do not affect the final solutions
when the solution is converged [2], but influence the convergence
rate and stability of the solution. Since the birth of SIMPLE, many
modified methods, such as SIMPLER [3], SIMPLEC [4], SIMPLEX [5],
PISO [6], CLEAR [7,8] etc., have been proposed to overcome the
shortcomings of the two approximations. Unlike other algorithms,
CLEAR does not introduce the pressure correction, improving the inter-
mediate velocity by solving a pressure equation to make the algorithm
fully implicit since there is no term omitted in the derivation process.
However, the robustness of CLEAR is somewhat weakened by directly
solving the pressure equation. To overcome this disadvantage, IDEAL
(Inner Doubly-iterative Efficient Algorithm for Linked-equations) was
proposed in [9,10]. Subsequently, it was extended to the 3D staggered/
collocated grid systems [11–13].
IDEAL includes inner doubly-iterative processes for solving
pressure equation at each iteration level. The first inner iteration
time N1 and the second inner iteration time N2 (hereafter named as
N1&N2) could be adjusted to control the convergence rate and the
stability of iteration process, which is significantly different from
other segregated algorithms. In previous articles about IDEAL [11–13],
different N1&N2 are applied corresponding to different ranges of time
step multiples. As the most crucial adjustable parameters, N1&N2
have great effect on the performance of IDEAL. However, there is little
analysis in this aspect. In order to gain further insight into IDEAL, we
study the effect of N1&N2 on the performance of the algorithm
systematically in this paper.

2. Brief review of IDEAL

The details of the implementations of IDEAL for incompressible
steady laminar flow in 3D Cartesian coordinates have been well-
documented in reference [11]. Here, we briefly review the solution
process of IDEAL as follows.

Step-1: Assume an initial velocity field.
Step-2: Calculate the coefficients and source terms of the discretized
momentum equations based on the initial velocity field.
Step-3: Solve the pressure equation iteratively until the iteration
time equals to the pre-specified value of N1. Once the first inner
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(a) Flow configuration
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(b) Outer iteration number
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Fig. 1. Flow configuration of 3-D lid-driven cavity flow and the outer iteration number
and computation time of IDEAL at different N1&N2 (a) Flow configuration (b) Outer
iteration number (c) Computation time.
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iteration process for solving pressure equation is over, the final
temporary pressure is regarded as the initial pressure.
Step-4: Solve the discretized momentum equations based on the
initial velocity and the initial pressure, and obtain the intermediate
velocity.
Step-5: Solve the pressure equation iteratively until the iteration
time equals to the pre-specified value of N2. Once the second inner
iteration process for solving pressure equation is finished, the final
temporary velocity is taken as the final velocity of the current
iteration level.
Step-6: Regard the final velocity as the initial velocity of the next
iteration level, and then return to the step 2 for the next iteration
level. Repeat the iterative procedure until convergence is reached.

3. Computation conditions and convergence criteria

The SGSD scheme [14] is adopted for the convective terms in
momentum equations. The pressure under-relaxation factor αP is set
as a fixed value of 1. And the same value is used for the u, v,w velocity
under-relaxation factors, i.e. αu=αv=αw. For convenience of pre-
sentation, we use the time step multiple E [4] which relates to the
velocity under-relaxation factor αu,v,w by Eq. (1):

E =
αu;v;w

1−αu;v;w
0 < αu;v;w < 1

� �
ð1Þ

It can be seen that with the time step multiple, we have a much
wider range to show the performance of IDEAL in the high-value
region of the under-relaxation factor.

In this paper, the convergence criteria require that both the relative
maximum residuals of mass (RsMass) and momentum (RsUMom, RsVMom

and RsWMom) are smaller than the pre-specified values [11].

4. Numerical analysis

In the following part, effects of N1 and N2 on the performance of
IDEAL are analyzed by four problems, which are

(1) Problem 1: three-dimensional lid-driven cavity flow;
(2) Problem 2: three-dimensional lid-driven cavity flow with

complicated structure;
(3) Problem 3: laminar flow over a backward-facing step;
(4) Problem 4: laminar flow through a duct with complicated

structure.

Problems 1 and 2 belong to closed system; problems 3 and 4 refer
to open system. The assumptions involved in these problems are
laminar, incompressible, steady-state, and constant physical proper-
ties of fluid.

4.1. Problem 1: three-dimensional lid-driven cavity flow

This problembelongs to a simple closed system. Fig. 1(a) shows the
flow configuration. Calculations are conducted for Re=100 and grid
number=52×52×52. All of the residuals RsMass, RsUMom, RsVMom and
RsWMom are smaller than 10−8. The Reynolds number is defined as

Re =
ulidH
ν

ð2Þ

Table 1 presents v-velocity values along the x-direction center line.
The velocity values computed at different N1&N2 are excellently con-
sistent with each other. Therefore, different N1&N2 have no influence
on the final solutions if the convergence is reached.

Fig. 1(b) and (c) shows the outer iteration number and the com-
putation time of IDEAL at different N1&N2. Four conclusions can be
drawn as follows.
(1) With the increase of N1&N2, the robustness of IDEAL is
enhanced greatly. In the case of 1&1, IDEAL could be converged
only at very small time step multiples (E≤10). In the cases of
4&4 and 7&7, IDEAL can obtain the convergence results at very
large time step multiples (E≤150).



Table 1
Comparison of v-velocity values along the x-direction center line at different N1&N2.

x coordinates (m) v-velocity values (m/s)

1&1 4&4 7&7

0.0 0 0 0
0.1 0.1192719 0.1192733 0.1192697
0.2 0.1514037 0.1514064 0.1514034
0.3 0.1324101 0.1324190 0.1324179
0.4 0.0841729 0.0841875 0.0841879
0.5 0.0132380 0.0132558 0.0132567
0.6 −0.0797810 −0.0797613 −0.0797599
0.7 −0.1837098 −0.1836824 −0.1836803
0.8 −0.2467483 −0.2467422 −0.2467420
0.9 −0.1829373 −0.1829140 −0.1829121
1.0 0 0 0
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(b) Outer iteration number
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(c) Computation time

Fig. 2. Flow configuration of 3-D lid-driven cavity flow with complicated structure and
the outer iteration number and computation time of IDEAL at different N1&N2 (a) Flow
configuration (b) Outer iteration number (c) Computation time.
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(2) At the same time step multiple, the outer iteration number
decreases with the increase of N1&N2, as shown in Fig. 1(b).

(3) At the same time stepmultiple, the computation time increases
with the increase of N1&N2, as shown in Fig. 1(c).

(4) At the optimal time step multiple, the outer iteration number
in the cases of 4&4 and 7&7 decreases by 66.1% and 72.0% over
the case of 1&1 respectively, and the computation time is
reduced by 41.5% and 30.5% respectively. Here, the optimal
time stepmultiple refers to the point atwhich the convergence
rate is the fastest.

4.2. Problem 2: three-dimensional lid-driven cavity flow with
complicated structure

This problem refers to a complicated closed system. Fig. 2(a) shows
the flow configuration with three blocks of baffle plates inserted in the
cubic cavity. Calculations are conducted for Re=100 and grid
number=52×52×52. The Reynolds number is defined in Eq. (2). All
of the residuals RsMass, RsUMom, RsVMom and RsWMom are smaller than
10−8.

Fig. 2(b) and (c) shows the outer iteration number and the
computation time of IDEAL at different N1&N2. It is seen from Fig. 2(b)
that the robustness is enhanced and the outer iteration number
decreases with the increase of N1&N2. Especially when N1&N2 are
changed from 1&1 to 4&4, the robustness is enhanced greatly and the
outer iteration number is decreased significantly. At the same time
step multiple, the computation time is varied irregularly with the
increase of N1&N2, sometimes decreasing and sometimes increasing,
as shown in Fig. 2(c). At the optimal time step multiple, the outer
iteration number in the cases of 4&4 and 7&7 decreases by 69.6% and
79.9% over the case of 1&1 respectively, and the computation time is
reduced by 52.4% and 56.3% respectively.

4.3. Problem 3: laminar flow over a backward-facing step

Configuration shown in Fig. 3(a) belongs to a simple open system,
which has been widely used as a typical configuration in computa-
tional fluid dynamics study. Calculations are performed for Re=100
and grid number=127×32×63. The inflow velocity distribution
is cited from Shah and London [15], and the fully-developed bound-
ary condition is used at the outflow boundary. All of the residuals
RsMass, RsUMom, RsVMom and RsWMom are set to be less than 10−7. The
Reynolds number is defined as

Re =
uinH
ν

ð3Þ

Table 2 presents the reattached length LR on plane z=4H. The
results computed at different N1&N2 approach those cited from
reference [16], verifying again that different N1&N2 have no influence
on the final solutions if the convergence is reached.

Fig. 3(b) and (c) shows the outer iteration number and the com-
putation time of IDEAL at different N1&N2. The convergence ranges
in the cases of 1&1, 4&4 and 7&7 are E≤10, E≤70, and E≤150
respectively. It proves that the larger the N1&N2 are, the better the
robustness of IDEAL performs. At the same time step multiple, the
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Fig. 3. Flow configuration of laminar fluid flow over a backward-facing step and the outer iteration number and computation time of IDEAL at different N1&N2 (a) Flow configuration
(b) Outer iteration number (c) Computation time.

Table 2
The predicted reattached lengthen LR on plane z=4H.

Re LR

1&1 4&4 7&7 Cited from reference [16]

100 2.895 2.898 2.896 2.854
150 3.998 3.995 3.996 3.972
200 5.051 5.055 5.052 5.052
250 6.059 6.059 6.058 6.055
300 7.010 7.014 7.012 6.981
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variation laws of outer iteration number and computation time are
identical to those in Problem 1 (simple closed system). At the optimal
time step multiple, the outer iteration number in the cases of 4&4 and
7&7 is decreased by 65.8% and 72.9% over the case of 1&1 respectively,
and the computation time is reduced by 35.1% and 26.2% respectively.

4.4. Problem 4: laminar flow through a duct with complicated structure

The problem 4 deals with a complicated open system. Fig. 4(a)
shows the flow configuration with three blocks of baffle plates inserted
in the duct. Calculations are conducted for Re=100 and grid
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(b) Outer iteration number
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Fig. 4. Flow configuration of laminar fluid flow through a duct with complicated structure and the outer iteration number and computation time of IDEAL at different N1&N2.
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number=150×20×20. The Reynolds number is defined in Eq. (3). The
inflow velocity is uniform, and the fully-developed boundary condition
is used at the outflow. All of the residuals RsMass, RsUMom, RsVMom and
RsWMom are less than 10−7.

Fig. 4(b) and (c) shows the outer iteration number and the
computation time of IDEAL at different N1&N2. The variation laws of
the robustness, the outer iteration number and the computation
time are almost identical to those in Problem 2 (complicated closed
system). At the optimal time stepmultiple, the outer iteration number
in the cases of 4&4 and 7&7 decreases by 66.4% and 78.3% over the
case of 1&1 respectively, and the computation time is reduced by
40.9% and 46.0% respectively.
5. Conclusion

In this paper, the effect of N1&N2 on the performance of IDEAL is
systematically analyzed by four incompressible fluid flow problems.
The conclusions are summarized as follows.

(1) The robustness of IDEAL is enhanced greatly with the increase
of N1&N2. When N1&N2 equal to 4&4 or 7&7, IDEAL can con-
verge almost at any time step multiple in the four problems
above.

(2) At the same time step multiple, the outer iteration number
decreases with the increase of N1&N2.
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(3) At the same time step multiple, it is not certain about the
variation laws of computation timewith the increase of N1&N2,
sometimes decreasing and sometimes increasing.

(4) At the optimal time step multiple, the large inner iteration
times of 4&4 and 7&7 can simultaneously reduce the outer
iteration number and the computation time over the small
inner iteration times of 1&1. In the four problems above, the
outer iteration number and the computation time in the cases
of 4&4 and7&7 can decrease about by 70% and 40% over the case
of 1&1 respectively.

The reasons causing the four results above are summarized as
three respects:

(1) The larger the N1&N2 are, the better the coupling between
velocity and pressure is guaranteed, which explains that the
robustness increases and the outer iteration number decreases
with the increase of N1&N2.

(2) At the same time step multiple, the outer iteration number
decreases, but the computation time spent on each iteration
level increases with the increase of N1&N2. Here, the compu-
tation time equals to the product of the outer iteration number
and the computation time spent on each iteration level, so it is
not certain about the variation laws of computation time.

(3) At the optimal time step multiple, larger N1&N2 can simulta-
neously reduce the outer iteration number and the computa-
tion time over 1&1, which is different from the situation of the
same time step multiple. This is because the robustness of
IDEAL is enhanced greatly with the increase of N1&N2. Thus we
can obtain fast convergence result at larger time step multiple.
Therefore, a fast convergence rate can be obtained by setting
larger values for the inner iteration times and the time step
multiple.
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