
Stokes flow past a compound drop in a circular tube
Yanxi Song, Jinliang Xu,a� and Yongping Yang
Beijing Key Laboratory of New and Renewable Energy, North China Electric Power University,
Beijing 102206, People’s Republic of China

�Received 20 November 2009; accepted 7 June 2010; published online 22 July 2010�

Microfluidics could generate drops or bubbles with controllable size and frequency at this stage.
However, analytical work on such problem is less reported in the literature. In this study, we study
the motion of a compound drop, consisting of a fluid drop engulfed in a larger drop, confined in a
circular tube. The analysis is based on the low Reynolds number Stokes flow theory. Interfaces are
assumed to be spherical due to large surface tension. Stream functions in one bipolar and two
cylindrical coordinate systems are developed in series form. Our new contribution is the
transformation between cylindrical and bipolar coordinate systems. Flow patterns are mainly
dependent on the relative motion and the size of the inner drop. Four types of flow patterns are
identified. Drag force on the inner or outer drops is in proportion to the product of the drop radius
and viscosity of the phase encapsulating the drop. Drag force on the inner or outer spheres is finally
expressed as linear combinations of velocities of the three phases �i.e., the inner drop, the outer drop,
and the continuous flow�, respectively. Our results show that those coefficients of the linear
combinations for the drag forces depend on several parameters: eccentricity of the compound drop,
viscosity ratio of two neighboring phases, radius ratio of the inner drop to the outer drop, and the
radius ratio of the outer drop to the tube. The two radius ratios have largest effects on the coefficients
of the inner or outer drop, respectively. Stability of the compound drop in a circular tube is analyzed.
It is found that though the compound drop cannot reach an absolutely steady state, it will enter a
quasisteady state where the inner sphere is adjacent to the shell of the outer sphere in practice.
© 2010 American Institute of Physics. �doi:10.1063/1.3460301�

I. INTRODUCTION

Mixing two immiscible fluids produces an emulsion, de-
fined as a dispersion of droplets of one fluid in a second
fluid. Emulsions play important roles in many types of pro-
cessing and in coatings, cosmetics, and foods.1 One common
application is to compartmentalize one fluid in a second,
which is important for packaging and stabilizing fluids and
other active ingredients. The intermediate fluid forms an ad-
ditional barrier that separates the innermost fluid from the
outer fluid, or the continuous phase.2 This makes double
emulsions highly desirable for applications in controllable
release of substances, separation, and for the control of en-
capsulation, release, and rheology for personal care
products.2

The first paper on double emulsions was published by
Seifriz.3 Since then many studies have been performed for
polydisperse emulsions. Usually, emulsions are produced by
the two-step methods. However, any capsule formed from
such double emulsions is poorly controlled in both size and
structure, by nature, limiting applications that require precise
control and release of active materials. Microfluidic tech-
niques offer a better way to produce more uniform double
emulsions. Utada et al.2 proposed a novel microfluidic de-
vice which produces controllable monodisperse microdouble
emulsions in a single step. Chu et al.4 could successfully
produce highly controllable double and triple emulsions by

means of coflow in series of capillary tubes with coaxial
calibration. They show that size and frequency of emulsions
can be precisely controlled with high monodispersity by
merely regulating the flow rate. Similar study was reported
by Nisisako et al.,5 demonstrating that microfluidic devices
could generate high-monodisperse emulsions. Recent
progress in this area was focused on either the experimental
studies6–8 or the numerical investigations such as Zhou
et al.9,10 Analytical solution of such a problem is less re-
ported in the literature.

A classical analytical solution of rigid or fluid sphere in
stationary or moving liquids in a cylindrical tube was given
by Haberman and Sayre.11 The rigid or fluid sphere does not
contain inner particle or fluid sphere inside. An exact analyti-
cal solution was developed in terms of an infinite set of lin-
ear algebraic equations for the coefficients in the form
of stream function. It was found that the drag force on the
sphere in the tube increases exponentially as its radius
increases.

Sadhal and Oguz12 examined the low Reynolds number
translatory motion of a compound drop in unbound environ-
ment. The compound drop consists of a liquid drop or a
bubble fully coated by another liquid, moving in a third im-
miscible fluid �not confined�. An analytical solution was de-
veloped for small capillary numbers by approximating the
two interfaces to be spherical. The results showed that the
viscous forces tend to move the inner-fluid sphere toward the
front stagnation point of the compound drop. There must be
a body force toward the front for equilibrium of the inner
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sphere with respect to the outer sphere. For a set of fluids,
two or four equilibrium configurations may be found under
gravity. Of these only one or two are stable. The others are
unstable.

Oguz and Sadhal13 studied the motion of a compound
drop formed by a vapor bubble completely coated by its
liquid phase in another immiscible liquid. The compound
drop is growing or collapsing due to the phase change while
it is translating under buoyant force. The analysis was based
on the assumption of the spherical interface. An exact ana-
lytical solution was developed for the fluid-mechanical part
of the problem. The heat transfer treatment of the problem
requires the numerical solution if we attempt to include the
convective terms with respect to time. It is found that the
drag component induced by radial velocity contributes to the
total drag on the bubble in eccentric configuration. This drag
force is toward the center of the drop in the case of growth
and has an effect of restoring concentricity. However, in the
case of growth, the compound drop can not maintain its con-
figuration of two nonintersecting eccentric spheres. In the
case of collapse the bubble stays inside the drop if the col-
lapse velocity is high enough.

Martinez and Udell14 studied the axisymmetric creeping
motion of a neutrally buoyant deformable drop flowing
through a circular tube by boundary integral method. The
fluids are immiscible, incompressible, and the bulk velocity
is constant. The effects of the capillary number, viscosity
ratio, and drop size on the deformation, drop speed, and the
additional pressure loss were examined.

The motion of a compound drop in a confined environ-
ment should be different from that in unbound environment.
Analytical solution of the motion of a compound drop in a
circular tube is not reported in the literature. The problem
studied in this paper may be encountered in various micro-
fluidic and large scale systems. The analysis is based on the
low Reynolds number Stokes flow assumption. The interface
is assumed to be spherical. Stream functions in one bipolar
and two cylindrical coordinate systems are given in the series
form. The new contribution is the transformation between
the cylindrical and bipolar coordinate systems. Drag forces
are expressed as linear combinations of the three phase ve-
locities with six coefficients. These coefficients are discussed
one by one. Finally, we give the stability analysis of the
compound drop.

II. STATEMENT OF THE PROBLEM

Figure 1 describes the flow system. There is a long
circular tube with a radius of R0. A compound drop is located
at the centerline of the circular tube. Three immiscible, in-
compressible phases are labeled as 1, 2, and 3, respectively.
Correspondingly, the outer radius of the compound drop is
R23. The inner drop has a radius of R12. The compound drop,
consisting of the inner and outer drops, is moving along the
tube centerline. The 2-3 and 1-2 interfaces are in spherical
shape with tangential mobility and translatory speed. Thus,
the geometric configuration is axisymmetric. The flow rate of
the continuous phase, i.e., phase 3, is constant, which can be
reached in many microfluidic experiments.

The governing equations in the limit of Stokes flow are
as follows:

� · u� i = 0,

�1�
�pi = �i�

2u� i,

where the subscript i refers to the three phases, u� i is velocity
vector, p is pressure, and � is viscosity. Equation �1� is valid
if the flow system is small enough so that the gravity can be
neglected. Otherwise, the flow system should be positioned
vertically for large flow system, under which the gravity can
be incorporated into the term of p.

In this paper we totally set up two cylindrical coordinate
systems and one bipolar coordinate system �� ,��. One cylin-
drical coordinate system �R ,z�� is rest with respect to the
circular tube. The other cylindrical coordinate system �R ,z�
is attached at the center of the interface 2-3. Fluid 3 moves at
constant bulk velocity U relative to the interface 2-3, and
interface 1-2 translates at velocity V as a whole relative to
the interface 2-3. The center of interface 2-3 translates at
velocity W relative to the circular tube. The boundary condi-
tions are as follows: �i� continuity of tangential velocity at
interface 2-3, �ii� zero normal velocity at interface 2-3 rela-
tive to the center of interface 2-3, �iii� continuity of shear
stress at interface 2-3, �iv� continuity of tangential velocity at
interface 1-2, �v� continuity of normal velocity at interface
1-2, �vi� continuity of shear stress at interface 1-2, �vii� finite
velocity in phase 1, �viii� Poiseuille flow at infinity, and �ix�
no-slip boundary condition at the wall of the circular tube.

The problem is completely defined by Eq. �1� and the
above nine boundary conditions. The normal shear stress is
automatically satisfied at large surface tension.

The process to solve the problem includes four steps in
brief. Firstly, let the stream function satisfy boundary condi-
tions �i�–�viii� under bipolar coordinate system. Second, let
the stream function satisfy boundary condition �ix� under
cylindrical coordinate system. Third, perform transformation
of the stream function between the two coordinate systems to
obtain an infinite set of liner algebra equations whose vari-
ables are coefficients of the series of the stream function.
Finally, truncate the infinite equation set to be finite in order
to solve. Accuracy can be elevated to any degree by retaining
more equations after truncation.

In Appendices A and C, the detailed derivations for the
boundary conditions under bipolar coordinate system, cylin-
drical coordinate system, and transformation between the
two systems are elaborated.

FIG. 1. The flow system of a compound drop in liquid confined by a circular
tube.
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III. RESULTS AND DISCUSSION

A. Validation of the solution

As mentioned in Appendix C, the exact solution of the
problem can be approached by increasing N� �see Appendix
C for definition of N��. Our results show that N�=14 leads to
good accuracy for all physical properties of the three phases
and most geometric configurations. Correspondingly, the so-
lution includes 28 series terms under bipolar coordinate sys-
tem. It is noted that N��25 is necessary to make solution
converge for very large eccentricity like 0.9, while N�=14 is
sufficient for eccentricity less than 0.833. Conventional float-
ing computation still applies to cases with small and moder-
ate eccentricity and radius ratio ���0.5, R23 /R0�0.8�,
which requires small N� and produces less abnormal linear
equation set. Large numerical diffusion may be encountered
in the sum and product of the recurrence formulas with in-
creases in N�. Besides, the coefficient matrix of the linear
equation set may become abnormal if N� is large. To ensure
accuracy at large eccentricity and radius ratio, we adopt the
nonstandard floating-point computation with 50-digit preci-
sion instead of 15-digit machine precision. In such a way
we reach at least five-digit precision of the drag force
and coefficient of the series for the extreme case
��=0.9, R23 /R0=0.9�. High-precision floating-point compu-
tations with any desired precision are easily applied with
mature algorithm based on integer computations, and are in-
tegrated into lots of commercial codes such as mathematical,
maple, etc. Speed of the computation is acceptable unless
precision is kept with hundreds of digits. Result can be ob-
tained within minutes on an ordinary PC, which is much
faster than the boundary integral method. The singularity
method is impossible to provide a solution for the present
problem due to the restrictions in geometry.

Due to the developed computer technology, it costs less
than half minute to obtain the results with such a high accu-
racy for a case, using an ordinary PC with an Intel core 2
Duo E8400 CPU �3 GHz�. A definition of the wall correction
factor is given in Sec. III C. Wall correction factors calcu-

lated in this study for a solid sphere moving in a still liquid,
and a rest solid sphere in Poiseuille flow, in a circular tube,
are compared with those given by Haberman and Sayre.11 It
is observed that they match very well from Table I. The
minidifference is caused by the coarse approximation of
Bessel integrals by Haberman and Sayre11 due to the limited
computation resource at that time. Table I also gives the wall
correction factors for some typical cases.

B. The flow field

It is found that there are four typical flow patterns for
different cases �see Fig. 2�. If there is no relative motion
between the inner and outer spheres, flow streamlines show a
set of circulation loops �see Fig. 2�a��, which are similar to
the well known patterns for a single drop moving in a con-
tinuous phase. If the inner drop translates in the same direc-
tion as the continuous phase relative to the outer sphere,
streamlines in the inner drop are very flat with nonuniform

TABLE I. Wall correction factors �1�: a solid sphere moving in a still liquid in a circular tube by Haberman and Sayre �Ref. 11�; 1: present computation for
case 1�; 2�: a fixed solid sphere in Poiseuille flow by Haberman and Sayre �Ref. 11�; 2 �note�: present computation for case 2� �note that Haberman and Sayre
�Ref. 11� used the velocity at the axis of the circular tube but we use the bulk velocity of the continuous flow to define the wall correction factor; therefore,
the results for 2 �note� are two times of those for 2��; 3: present computations for �1 :�2 :�3=1:1 :1, W :U :V=1:1:1, �=0.5, R12 /R23=0.5; 4: present
computations for �1 :�2 :�3=100:10:1, W :U :V=1:1:1, �=0.75, R12 /R23=0.5; 5: present computations for �1 :�2 :�3=1:10:100, W :U :V=1:1:1, �=0.2,
R12 /R23=0.5; 6: present computations for �1 :�2 :�3=1:1 :1, W :U :V=10:1 :1, �=5 /6, R12 /R23=0.9�.

Case

R23

R0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1� 1.263 1.680 2.371 3.596 5.970 11.135 24.955 73.555 N/A

1 1.2632 1.6795 2.3701 3.5914 5.9474 11.0919 24.6760 74.6700 469.2244

2� 1.255 1.635 2.231 3.218 5.004 8.651 17.671 47.301 N/A

2 �note� 2.5096 3.2696 4.4580 6.4315 9.9907 17.2260 34.9481 95.2405 532.8661

3 3.0857 3.8594 4.9823 6.6894 9.4608 14.4257 24.8441 53.9975 216.2092

4 2.9219 3.7651 5.0365 7.0512 10.4765 16.9401 31.3155 74.1093 323.3151

5 3.3669 4.0554 5.0483 6.5679 9.0830 13.7332 23.9464 54.4405 241.8377

6 2.2570 2.9100 3.9047 5.4992 8.2456 13.5023 25.3598 61.0303 268.0281

FIG. 2. �Color online� Flow patterns due to motions of inner and outer drops
for R23 /R0=0.6. �a� �=1 /4, R12 /R23=1 /3, �1 :�2 :�3=1:1 :1, W /U=−1,
V=0; �b� �=1 /4, R12 /R23=1 /3, �1 :�2 :�3=1:1 :1, W /U=1, V /U=1; �c�
�=1 /4, R12 /R23=1 /3, �1 :�2 :�3=1:1 :1, W /U=1, V /U=−1; �d� �=1 /2,
R12 /R23=3 /4, �1 :�2 :�3=10:1 :1, V /U=−1, W /U=1.
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distance between each other �see Fig. 2�b��. Flow inside the
inner drop has translatory velocity only. However, at the in-
ner drop surface flow streamline overlaps with the surface,
indicating fluid movement along the surface.

Figure 2�c� shows flow streamlines for the inner drop
moving in the opposite direction with the continuous phase.
Slightly curved streamlines appear inside the inner drop.
There are double circulations in the outer drop beyond the
inner drop. For large inner to outer drop size ratio, as shown
in Fig. 2�d�, circulations are complete inside the inner drop,
while incomplete in the outer drop due to the limited space
for the flow development.

C. Drag forces

According to Jeffery,15 drag forces on outer and inner
spheres are

Fo =
2�2�3�

c
�
n=1

	

�An
�3� + Bn

�3� + Cn
�3� + Dn

�3�� , �2�

Fi =
2�2�2�

c
�
n=1

	

�An
�2� + Bn

�2� + Cn
�2� + Dn

�2�� . �3�

Comparing Eqs. �A19� and �A21�, we have

Fo =
4�2�3�

c
�
n=1

	

�Ane−�n−1/2��23�1 − e−2�23�

− �Bn + V̇1�e−�2n−1��23 − �Cn − V̇2�e−�2n+3��23� , �4�

Fi =
4�2�2�

c
�
n=1

	

e−�n−1/2��23


�Dn�1 − e−2�23� + En + Fne−�n+3/2��23� . �5�

It is noted that the present problem is reduced to a simple
one with a compound drop moving in a stationary unbound
fluid, if the tube radius approaches infinity �consequently Bn

and Cn approach zero� and W=−U, under which the drag
force on the compound drop is called Fo

�. We define the wall
correction factor Coewall as

Coewall =
Fo

Fo
� . �6�

Bulk motion of the compound drop is controlled by drag
forces both on the inner and outer spheres. It is important to
study the drag forces for different cases. It is seen from Eqs.
�A25�–�A36� and the solution procedure of Bn and Cn that
constants An–Gn are not only linear combinations of velocity

FIG. 3. Dependence of �o on R23 /R0 and eccentricity at R12 /R23=0.5.
�a� Variations of �o on R23 /R0. �b� Relative difference of �o vs
R23 /R0, in which relative difference is defined as ��o

−��,�1:�2:�3=1:1:1,�=0.2� /��,�1:�2:�3=1:1:1,�=0.2. �c� Relative difference of �� vs
eccentricity.

FIG. 4. Dependence of �o on R12 /R23 at two different R23 /R0 ��o is constant
when �2→0 or �2→	 for any � when R23 /R0 is fixed�.

FIG. 5. Dependence of 
o on R23 /R0 and � at R12 /R23=0.5. �a� 
o vs
R23 /R0. �b� Relative 
o vs �.

FIG. 6. 
o vs R12 /R23 for two different R23 /R0 �
o equals to zero when
�2→0�.
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2W+U, W+U, and V, but also proportional to the drop ra-
dius and viscosity of the phase encapsulating the drop. Thus,
by Eqs. �4� and �5� we obtain

Fo = ��oW + 
oV + �oU���3R23, �7�

Fi = ��iW + 
iV + �iU���2R12, �8�

where �o, 
o, �o, �i, 
i, and �i are coefficients for W, V, and
U, respectively. The subscripts o and i represent the outer
and inner spheres. These coefficients depend on geometric
configuration �R23 /R0 ,R12 /R23,�� and viscosity ratio
��1 /�3 ,�2 /�3�.

Figures 3 and 4 show variations of �o dependent on
R12 /R23, R23 /R0, �, and viscosity ratios of the three phases.
As seen from Fig. 3�a�, �� increases significantly with in-
creases in R23 /R0. This trend becomes more apparent when
the outer sphere radius approaches the radius of the circular
tube, i.e., R23 /R0→0. For instance, �� at R23 /R0=0.9 is sev-
eral hundred times larger than that at R23 /R0=0, causing
very high wall correction factors. Effects of viscosity ratios
�1 /�2 and �2 /�3 on �� are different. It is interesting to find
that �, 
, and � at �3→0 are the same as those at �2→	.

Meanwhile, these coefficients are identical at �3→	 and
�2→0, no matter how �1 changes. Two special cases of
�2→0 and �2→	 give the lower and upper bounds of ��

for all viscosity ratios, corresponding to gas bubble and solid
sphere for phase 2, respectively. Because the three curves
��1 :�2 :�3=1; �1→0, �2 :�3=1; and �1→	 , �2 :�3=1�
in Fig. 3�a� nearly overlap, relative difference of �o from the
case of �1 :�2 :�3=1 is given in Fig. 3�b�, indicating the
maximum difference of less than 4%. Figures 3�a� and 3�b�
show that the inner drop viscosity �1 has very small effect
on ��. Besides, the eccentricity has mini-influence on �� �see
Fig. 3�c��. It is noted that �� has nothing to do with eccen-
tricity when phase 2 is gas bubble or solid sphere.

We consider the effect of radius ratio of inner drop to
outer drop, i.e., R12 /R23, on �� in Fig. 4. �� is increased with
increases in R12 /R23, see Fig. 4�a� for small radius ratio of
outer drop to circular tube �R23 /R0=0.3�. For large R23 /R0

such as 0.9, slopes of �� versus R12 /R23 become large when
R12 /R23 is larger than a critical value about 0.7 �see Fig.
4�b��. Generally, �� increases significantly with increases in
R23 /R0 by comparing Figs. 4�a� and 4�b�.

In general, the effect of 
� on the drag force is smaller
than �� by comparing Figs. 4 and 5. Viscosity ratios of the
three phases have a complicated influence on 
�. As shown
in Fig. 5�a�, 
� is zero when the outer sphere is gas bubble
��2→0�, giving the lower bound of 
� among all the viscos-
ity ratios. However, 
� with solid outer sphere ��2→	� does

FIG. 7. Dependence of �o on R23 /R0 and eccentricity at R12 /R23=0.5.
�a� Variations of �o on R23 /R0. �b� Relative difference of �o vs
R23 /R0, in which relative difference is defined as ���

−��,�1:�2:�3=1:1:1,�=0.2� /��,�1:�2:�3=1:1:1,�=0.2. �c� Relative difference of �� vs
eccentricity.

FIG. 8. Dependence of �o on R12 /R23 at two different R23 /R0 ��o is constant
when �2→0 or �2→	 for any � when R23 /R0 is fixed�.

FIG. 9. �Color online� �i vs R23 /R0 and � at R12 /R23=0.5, �i�0 when
�2→	. �a� �i vs R23 /R0. �b� Relative �i vs �.

FIG. 10. −�i vs R12 /R23 at two different R23 /R0, �i�0 when �2→	.
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not give the upper bound. For instance, 
� with solid outer
sphere ��2→	� is even slightly smaller than that at �2 /�3

=1 and �1→	 for R23 /R0 smaller than 0.4 �see Fig. 5�a��.
Eccentricity has a larger effect on 
� than on �o by compar-
ing Figs. 3�c� and 5�b�, due to the closer relationship be-
tween eccentricity and V than the relationship between ec-
centricity and W, where V is the inner drop velocity relative
to the outer sphere, and W is the continuous phase velocity
relative to the outer sphere. Moreover, two contrary trends
are observed for �o versus �, i.e., �o increases as � increases
at lower R23 /R0, but �o decreases as � increases at higher
R23 /R0, as shown in Fig. 5�b�.

Figure 6 shows 
� versus R12 /R23 �radius ratio of inner
sphere to outer sphere� at two different R23 /R0 of 0.3 and
0.9. Both subfigures give the increased 
� with increases in
R12 /R23.

It is shown in Figs. 7 and 8 that �o exhibits similar
dependence on the parameters R12 /R23, R23 /R0, and �. �o

increases fast as R12 /R23 or R23 /R0 approaches unity. How-
ever, �o contributes much less to the drag force on the outer
drop, especially when R12 /R23 or R23 /R0 is close to unity,
indicating that relative movement between the drop and bulk
flow of the continuous phase dominates over the drag force.
Therefore, drag force on the outer drop is far more sensitive
to W than U.

�i and 
i are negative for all the cases, indicating devia-
tion of the inner drop from the centroid of the compound
drop. As shown in Fig. 9�a�, �i at �2→0 and �2→	 give
the low and up bounds among all viscosity ratios of the three
phases. Eccentricity � has larger influence on �i than on �o

by comparing Figs. 3�c� and 9�b�. It is observed from Fig.
9�b� that �i can be increased or decreased with increases in
eccentricities, depending on viscosity ratios of three phases
and R23 /R0. Figure 10 shows that −�i is increased exponen-
tially with increases in R12 /R23. This is true no matter how
other parameters change.


i represents the drag force on the inner drop due to the
inner sphere velocity V relative to the outer sphere. Figure

11�a� illustrates that 
i is quite insensitive to R23 /R0. This is
because the geometry parameter outside the compound drop
has almost nothing to do with the drag force on the inner
sphere. Figure 11�b� shows that 
i increases monotonically
with increases in eccentricity. Slopes of 
i versus � become
very large when � approaches unity.

Similar to Fig. 10 for �i versus R12 /R23, Fig. 12 shows
that −
i is increased exponentially with increases in R12 /R23.
For smaller R12 /R23 such as less than 0.2, gradient of −
i

versus R12 /R23 is not large, under which R12 /R23 is not the
dominant parameter contributing to the drag force on the
inner drop. For larger R12 /R23, however, slope of −
i versus
R12 /R23 is tremendously high, indicating that the drag force
on the inner sphere is dominated by R12 /R23.

In general, �i is sensitive to �, as shown in Fig. 13�b�.
Unlike �i, the absolute value of �i increases rapidly with the
increase of � in all the cases studied, and is very insensitive
to R23 /R0, as demonstrated, respectively, in Figs. 13�a� and
14. Although �i becomes larger as R12 /R23 increases from
0.1 to 0.9, it is still far smaller compared with �i and 
i at the
same condition. As a result, � is taken much less important
compared with � and 
. It is easy to understand since � is
associated with the relative velocity U toward the tube wall,
which has less relationship to the flow resistance exerted on
the drop.

FIG. 11. �Color online� 
i vs R23 /R0 and � at R12 /R23=0.5. �a� 
i vs R23 /R0.
�b� Relative 
i vs �.

FIG. 12. 
i vs R12 /R23 at two different R23 /R0 �
i is constant if �2→0 or
�2→	�.

FIG. 13. �Color online� �i vs R23 /R0 and � at R12 /R23=0.5, �i�0 when
�2→	. �a� �i vs R23 /R0. �b� Relative �i vs �.
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D. Validation of spherical shape assumption

As indicated above, drag forces increase significantly
when R12 /R23 and R23 /R0 approach unity. One may concern
the condition under which the spherical phase shape is valid.
Note that exact spherical shape is never reached because it is
impossible to satisfy the normal stress boundary condition
everywhere on the sphere surface with limited interfacial ten-
sion. This is easily inferred from the normal stress boundary
condition to be satisfied, which is neglected and treated to be
automatically satisfied with infinite surface tension in the
above sections. Normal stress on sphere surface is expressed
as �=−p+2���u /��� in bipolar coordinate system. Thus,
normal stress on inner and outer spheres should satisfy the
following equations, respectively:

�2 = − p2 + 2�2
�u�,2

��
� �1 − p1 + 2�1

�u�,1

��
+

2�12

R12�
, �9a�

�3 − p3 + 2�3
�u�,3

��
� �2 − p2 + 2�2

�u�,2

��
+

2�23

R23�
, �9b�

where subscripts 1, 2, and 3 denote the three fluids while �12

and �23 denote interfacial tensions for the two spherical
surfaces. R23� and R12� are local curvature radii of the outer
and inner surfaces. The stress jump ��12=2�12 /R12� and
��23=2�23 /R23� across the two interfaces are determined by
interfacial tensions. Although the absolute value of �� in-
creases as interfacial tension increases, the difference of ��
between any pair points on the sphere is uniquely determined
by a given flow status. Therefore it is obvious that R23� and
R12� approach R23 and R12, respectively, as interfacial tensions
�12 and �23 approach infinity. From the practical point of
view, the spherical interface assumption is valid if the local
curvature radius has small variance such as 10% or 5%
across the whole interface. We have the following two equa-
tions when subscripts 12 and 23 are omitted for simplicity:

��max =
2�

R − �R− , �10a�

��min =
2�

R + �R+ , �10b�

where �R+ and �R− represent maximum positive and nega-
tive curvature radii deviating from R at the limit of � ap-
proaching infinity. Therefore, R−�R− and R+�R+ represent
the minimum and maximum local curvature radii of the drop
surface, respectively. It is sure that �R must be small com-

pared to R in order to form spherical shape for the drop.
Thus, Eq. �11� is inferred from Eq. �10� that

��max − ��min =
2���R+ + �R−�

�R − �R−��R + �R+�

	
2���R+ + �R−�

R2 . �11�

Thus, the degree of maximum shape deformation �S from
the real drop to fluid sphere is written as follows:

�s =
�R+ + �R−

2 
 R 
 100%

	
���max − ��min�R

4�

 100%. �12�

By verifying the small value of �s �e.g., 10% or 5%�, we
can assess whether the assumption of spherical shape is ap-
plicable. Several typical flow conditions are examined in mi-
crofluidic regime, as illustrated in Fig. 15. Pressure p is
evaluated from the stream function following the complex
procedure provided by Pasol et al.16 It is found that p has
similar expression as stream function: it is proportional to �
and is a linear combination of U, V, and W. According to Eq.
�12�, �s is in inverse to surface tension �, so it is in propor-
tion to capillary number Ca. It is difficult to pinpoint where
��max and ��min appear on the drop surface due to difficulty
to find the zero-points of the derivatives of the nonlinear
partial equations. Therefore, we calculate 12 points equally
distributed on each sphere surface and perform comparison
to find the approximate maximum and minimum surface
stress jump among these points. Two capillary numbers are
defined in Fig. 15, Cao=�3W /�23 for the outer drop and
Cai=�2W /�12 for the inner drop. Figure 15�a� shows the de-
gree of maximum shape deformation with several typical
microfluidic running parameters. When R23 /R0 and R12 /R23

are less than 0.5, �s is around or less than 10% at

FIG. 14. −�i vs R12 /R23 at two different R23 /R0, �i�0 when �2→	.

FIG. 15. Maximum variation of local curvature radius of surfaces of outer
and inner spheres, �a� for outer sphere and �b� for inner sphere
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Cao=0.025 and Cai=0.025 for different values of viscosity
ratio and eccentricity. Note that shape deformation varies in
proportion to the Ca number. Therefore, the assumption of
spherical shape is valid with even larger radius ratios in
micro- or nanosystems where capillary number can reach as
low as 10−4. Since the capillary number in most microfluidic
systems is smaller than 10−2, we conclude that analytical
solution is applicable with moderate radius ratio such as
R23 /R0 and R12 /R23 are less than 0.6.

E. Stability analysis

Gravity is not important in fluid mechanics for small size
flow systems. Thus, we focus on the situation under which
the flow system is horizontally positioned. For Stokes flow in
large scale systems, Sadhal and Oguz12 studied the flow for
which gravity induced buoyancy is important to sustain
steady vertical movement of a compound drop. When a
steady state of a compound drop is reached, drag forces on
both inner and outer spheres disappear. Besides, there is no
relative motion between the inner and outer spheres �V=0�.
Thus, we have

Fo = �oW + �oU = 0 →
W

U
= −

�o

�o
, �13�

Fi = �iW + �iU = 0 →
W

U
= −

�i

�i
. �14�

We plot curves of −���� �dashed curves� and −�i /�i �solid
curves� against eccentricity � in Fig. 16. The two curves
represent Fo=0 and Fi=0, respectively. Velocity ratios of
W /U can be varied anywhere in Fig. 16. Steady state of a
compound drop can be reached if the two curves intersect

with each other. It is observed from Fig. 16 that the two
curves approach each other as � increases. However, they
never intersect, indicating that the absolutely steady state can
not be reached, even at very large eccentricity. The inner
droplet will eventually collide with the outer drop. This is
true for all the cases studied in this paper.

On the other hand, collision of the drops does not nec-
essarily imply breakage of the compound drop. Moreover,
the compound drop may travel over a long range through the
tube before collision occurs. As is seen from Fig. 16, al-
though the two curves representing Fo=0 and Fi=0, respec-
tively, do not intersect under the condition that V is zero,
they do sit close to each other, especially when � approaches
unity. There is no solution for force-free state of the two
drops if V is zero, i.e., the compound drop cannot reach static
equilibrium. The inner and outer drops can reach a force-free
state simultaneously if V is not zero. The instantaneous bal-
ance will be broken after the geometric configuration
changes due to the nonzero V. If V is relatively small, how-
ever, the force-free state of the inner and the outer drops may
be reinstated rapidly due to the slow change of the geometric
configuration. This process is in analogy to an inflating fire
balloon: the pressure outsize and inside the balloon cannot be
balanced if the balloon is inflating rapidly, whereas the qua-
sistatic state is reached when the balloon is inflating very
slowly. The problem is that the compound drop can not be
stable for a long time with � close to unity, as observed in
many experiments, supported by the finding that the drag
forces are zero when V is small.

Replacing Eqs. �13� and �14� with Eqs. �15� and �16�, we
obtain

Fo = �oW + 
oV + �oU = 0, �15�

Fi = �iW + 
iV + �iU = 0. �16�

From Eqs. �15� and �16� we obtain

V =
�o�i − �i�o

�i
o − �o
i
U . �17�

By Eq. �17� we can plot the ratio of V to U against eccen-
tricity �, as shown in Fig. 17. Because the value of V /U is
symmetric against the straight line of �=0, the curve is only
plotted for � from 0 to 1. It is observed that the relative
motion between the inner sphere and outer sphere is very
weak compared with velocity of the outer drop to the tube
wall. For example, when the inner drop is located near the
center of the compound drop, the relative velocity between

FIG. 16. Stability region for a compound drop in a long circular tube at
various conditions.

FIG. 17. Inner/outer velocity ratio when drag forces disappear.
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the inner and outer spheres is about only one tenth of the
bulk velocity of the compound drop to yield the zero total
forces on the inner and compound drop. Moreover, the ve-
locity V decreases dramatically as � approaches 0.9. There-
fore, we can expect the compound drop to reach a kind of
quasisteady state where joined forces on inner and outer
spheres vanish. Besides, the inner drop is almost at rest when
it is located near the shell of the outer drop. It means that
stable compound drops can be produced in laboratory be-
cause it costs relatively short time for a compound drop to
move in the tube. Since drag forces and V /U are symmetric
to the line �=0, whether final location of the inner drop is
near �=1 or �=−1 is determined by the initial conditions.

Although the compound drop can not reach an abso-
lutely steady state, it will enter a quasisteady state when the
inner sphere is adjacent to the shell of the outer sphere. Non-
axisymmetric disturbance and/or configuration cause the
compound drop deviating from the centerline of the tube.
This is because it is hard to produce perfectly axisymmetric
coflow in practice. It is difficult to reach an analytical solu-
tion for the nonaxisymmetric compound drop problem, but it
may be treated for small deviation of the drop from the cen-
terline of the tube, which needs future work.

IV. CONCLUSION

An exact analytical solution was developed for the mo-
tion of a compound drop in a long circular tube. Three
phases are involved in the problem, which can be encoun-
tered in various microfluidic devices to produce double
emulsions. The analysis is based on the low Reynolds num-
ber Stokes flow theory. Stream functions in one bipolar and
two cylindrical coordinate systems are developed in series
forms. Our new contribution focuses on the transformation
between the cylindrical and bipolar coordinate systems. Flow
field in the whole computation domain can be obtained
through the developed stream functions. Flow patterns are
mainly dependent on the relative motion and the size of the
inner drop. Four types of flow patterns are identified. Drag
forces on the inner and outer spheres are expressed as linear
combinations of velocities of the three phases with six coef-
ficients �i, 
i, �i, �o, 
�, and �o. Drag force on the inner or
outer spheres is in proportion to the sphere radius and vis-
cosity of the phase encapsulating the drop. Our results show
that coefficients �i, 
i, �i, �o, 
�, and �o for drag forces
depend on various parameters such as viscosity ratio, radius
ratio, and eccentricity, among which R12 /R23 and R23 /R0

have the largest effect on the coefficients for the inner or
outer drop, respectively. Finally, we analyze the stability of
the compound drop in a circular tube. We found that al-
though the compound drop cannot reach an absolutely steady
state, it will enter a quasisteady state where the inner drop is
adjacent to the shell of the outer drop in practice. At present,
the analytical solution is limited to axisymmetric configura-
tion which idealizes the experimental setup, and future work
is expected to be done to tackle the nonasymmetric problem.
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APPENDIX A: THE BIPOLAR COORDINATE SYSTEM

By carrying out the transformation,

R = c
sin �

cosh � − cos �
, z� = c

sinh �

cosh � − cos �
, �A1�

we establish the relationship between the bipolar coordinate
system and the cylindrical coordinate system at rest relative
to the circular tube, where c is one half the distance between
the points defined by �→	 and �→−	. Under bipolar co-
ordinate system, constant values of � represent a set of non-
intersecting eccentric spheres. We identify the inner sphere
by �=�12 and the outer sphere by �=�23. Setting R12 and
R23 as the radii of the spheres, R0 as the cylinder radius, d as
the distance between the centers of the two spheres �see Fig.
1�, and � as the eccentricity, we have

R23 =
c

sinh �23
, R12 =

c

sinh �12
, and � =

d

R23 − R12
.

�A2�

By applying a little algebra, we obtain the following expres-
sions about �12 and �23:

�12 = arccosh
R23

2 − R12
2 − d2

2dR12
,

�A3�

�23 = arccosh
d2 + R23

2 − R12
2

2dR23
.

Combining Eqs. �A2� and �A3�, the coordinate constant c can
be determined. It is noted that �12, �23, and d have the same
sign. For the case that the compound drop moves with nega-
tive �12, �23, and d, there is a mirror against which another
compound drop is symmetrical to the �=0 plane with posi-
tive �12, �23, and d, moving in opposite direction. Therefore,
for the analysis simplicity, we only deal with the case that the
compound drop lies on the ��0 area with positive �12, �23,
and d, unless it is emphasized for the negative values of � in
this paper.

By introducing stream function ��i��� ,�� which satisfies
the expression of

�u�,u�� =
�cosh � − cos ��2

c2 sin �
� ��

��
,−

��

��
� , �A4�

Eq. �1� can be transformed into

D2���i�� = 0, �A5�

where the subscript i refers to the three phases, operator D
satisfies15
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D =
sin ��cosh � − cos ��

c2 
 �

��
� cosh � − cos �

sin �
� �

��

+
�

��
� cosh � − cos �

sin �
� �

��
� . �A6�

Boundary conditions �i�–�viii� can be expressed in bipolar
coordinate system as

� ���3�

��
�

�=�23

= � ���2�

��
�

�=�23

, �A7�

��3���=�23
= ��2���=�23

= 0, �A8�

�3T���3����=�23
= �2T���2����=�23

, �A9�

where operator T is expressed as12

T =
1

c3� �

��

 �cosh � − cos ��3

sin �
� �

��

−
�

��

 �cosh � − cos ��3

sin �
� �

��
� , �A10�

� ���2�

��
�

�=�12

= � ���1�

��
�

�=�12

, �A11�

��2���=�12
=

1

2
Vc2 sin2 �

�cosh �12 − cos ��2 = ��1���=�12
, �A12�

�2T���2����=�12
= �1T���1����=�12

, �A13�

��1���→	 � 	 , �A14�

��3���,�→0 =
�2W + U�c2 sin2 �

2�cosh � − cos ��2 −
�W + U�c4 sin4 �

2�cosh � − cos ��4R0
2 .

�A15�

In Eqs. �A12� and �A15�, the parameters V, W, and U are
relative velocities to the inner sphere, outer sphere, and Poi-
seuille flow. The boundary condition �ix� is to be determined
in Appendix B

Jeffery15 gave a general solution for an axisymmetric
problem under bipolar coordinate system, which was written
as

��i� = �cosh � − cos ��−3/2 �
n=−1

	

�n
�i�Cn+1

−1/2�cos �� , �A16�

where Cn+1
−1/2 is the Gegenbauer polynomial of order �n+1�

and degree of �1/2. �n
�i� is denoted as

�n
�i� = An

�i��cosh�n − 1
2��� + Bn

�i��sinh�n − 1
2��� + Cn

�i�


�sinh�n − 1
2��� + Dn

�i��sinh�n + 3
2��� , �A17�

where An
�i�–Dn

�i� represent the 12 integration constants. In this
study, the first two terms in the series of Eq. �A16� should be
omitted due to the finite velocity at R=0 and the symmetry
flow to the centerline of the circular tube. Thus, Eq. �A16�
becomes

��i� = �cosh � − cos ��−3/2�
n=1

	

�n
�i�Cn+1

−1/2�cos �� . �A18�

Solutions of �n
�i� satisfying Eqs. �A8�, �A12�, �A14�, and

�A15� are written as Eqs. �A19�–�A22�, which contain seven
integration constants denoted as An, Bn, Cn, Dn, En, Fn, and
Gn �An–Dn are not the alternative form for An

�i�–Dn
�i�!�,

�n
�3� = �2�n + 1�nc2�W +

U

2
+

2

3
c2R0

−2�n − 1��n − 2��W + U�

2n − 1
�e−�n−1/2�� − e�n−1/2���−2�23���

−

W +
U

2
+

2

3
c2R0

−2�n + 3��n + 2��W + U�

2n + 3
�e−�n+3/2�� − e�n+3/2���−2�23�� + An�e�n−1/2���−�23� − e�n+3/2���−�23��

+ Bn�e−�n−1/2�� − e�n−1/2���−2�23�� + Cn�e−�n+3/2�� − e�n+3/2���−2�23�� �� � 0� , �A19�

�n
�3� = �2�n + 1�nc2�W +

U

2
+

2

3
c2R0

−2�n − 1��n − 2��W + U�

2n − 1
�e�n−1/2�� − e�n−1/2���−2�23���

−

W +
U

2
+

2

3
c2R0

−2�n + 3��n + 2��W + U�

2n + 3
�e�n+3/2�� − e�n+3/2���−2�23�� + An�e�n−1/2���−�23� − e�n+3/2���−�23��

+ Bn
�e�n−1/2�� − Bne�n−1/2���−2�23� + Cn

�e�n+3/2�� − Cne�n+3/2���−2�23� �� � 0� . �A20�
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Equation �A20� is deducted based on expansions of the term
of R2Lzm for ��0 in Appendix B, and it is useless because
we only consider that the case for ��0 is given only for the
sake of integrity of the whole flow field of phase 3,

�n
�2� = Dn�cosh
�n −

1

2
��� − �23��

− cosh
�n +
3

2
��� − �23���

+ En sinh
�n −
1

2
��� − �23��

+ Fn sinh
�n +
3

2
��� − �23�� , �A21�

�n
�1� =

�2

2
Vc2�n + 1�n
 e−�n−1/2��

2n − 1
−

e−�n+3/2��

2n + 3
�

+ Gn�e−�n−1/2���−�12� − e−�n+3/2���−�12�� . �A22�

In order to satisfy Eqs. �A19�, �A20�, and �A22�, the follow-
ing two identities are applied:

sin2 �

�cosh � − cos ��1/2

= �2�
n=1

	

�n + 1�n
 e��n−1/2��

2n − 1
−

e��n+3/2��

2n + 3
�

· Cn+1
−1/2�cos �� , �A23�

sin4 �

�cosh � − cos ��5/2

=
4�2

3 �
n=1

	 
 �n + 2��n + 3�e��n+3/2��

2n + 3

−
�n − 1��n − 2�e��n−1/2��

2n − 1
�


 �n + 1�n · Cn+1
−1/2�cos �� , �A24�

where the sign � is taken as positive for ��0 and negative
for ��0.

By substituting boundary conditions expressed in Eqs.
�A7�, �A9�, �A11�, �A12�, and �A14� into Eqs. �A19�, �A21�,
and �A22�, we obtain five linear algebra equations with
seven variables to be determined. After reduction of some
lengthy linear algebra, five of these constants are given as
follows:

Dn =
�1 + �2

�
, �A25�

An =
�2

�3
Dn, �A26�

Fn =
�3 − �4

�
, �A27�

En =

��2n − 1�Bn + U̇1�e−�n−1/2��23 + ��2n + 3�Cn − U̇2�e−�n+3/2��23 + 2
�2

�3
Dn + �n +

3

2
�Fn

1

2
− n

, �A28�

Gn = Dn��n

2
−

1

4
�sinh
�n −

1

2
���12 − �23��

− �n

2
+

3

4
�sinh
�n +

3

2
���12 − �23���

+ �n

2
−

1

4
�En cosh
�n −

1

2
���12 − �23��

+ �n

2
+

3

4
�Fn cosh
�n +

3

2
���12 − �23��

+
V̇

4
�e−�n−1/2��12 − e−�n+3/2��12� , �A29�

where

V̇ =
�2

2
Vc2�n + 1�n , �A30�

U̇1 = �2�n + 1�nc2



W +
U

2
+

2

3
c2R0

−2�n − 1��n − 2��W + U�� , �A31�

U̇2 = �2�n + 1�nc2



W +
U

2
+

2

3
c2R0

−2�n + 3��n + 2��W + U�� , �A32�

�1 = ���2n − 1�Bn + U̇1�e−�n−1/2��23

+ ��2n + 3�Cn − U̇2�e−�n+3/2��23�


 �cosh��2n + 1���12 − �23�� − cosh�2��12 − �23��

+
�1

�2
sinh��2n + 1���12 − �23��� , �A33�
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�2 =
V̇

2
e−�n−1/2��12�
1 −

�2n − 1�e−2�12

2n + 3
� · ��1

�2
�n +

3

2
�cosh
�n +

3

2
���12 − �23�� −

�1

�2
�n +

3

2
�cosh
�n −

1

2
���12 − �23��

+ 2 sinh
�n +
3

2
���12 − �23��� + 
�1

�2
− ��1

�2
−

4

2n + 3
�e−2�12� 
 ��n −

1

2
�sinh
�n +

3

2
���12 − �23��

− �n +
3

2
�sinh
�n −

1

2
���12 − �23���� , �A34�

�3 = ���2n − 1�Bn + U̇1�e−�n−1/2��23 + ��2n + 3�Cn − U̇2�e−�n+3/2��23�


 ��1

�2
cosh��2n + 1���12 − �23�� −

�1

�2
�n +

1

2
�cosh�2��12 − �23�� + sinh��2n + 1���12 − �23��

− sinh�2��12 − �23�� +
�1

�2
�n −

1

2
�� , �A35�

�4 =
V̇

2
e−�n−1/2��12�
1 −

�2n − 1�e−2�12

2n + 3
� · ��1

�2
�n −

1

2
�sinh
�n −

1

2
���12 − �23�� −

�1

�2
�n +

3

2
�sinh
�n +

3

2
���12 − �23��

− 2 cosh
�n +
3

2
���12 − �23�� − 2

�1

�3
cosh
�n −

1

2
���12 − �23��� + 
�1

�2
− ��1

�2
−

4

2n + 3
�e−2�12�

· ��n −
1

2
�cosh
�n −

1

2
���12 − �23�� − �n −

1

2
�cosh
�n +

3

2
���12 − �23�� − 2

�2

�3
sinh
�n −

1

2
���12 − �23���� ,

�A36�

� = 
2�2

�3
+

�1

2�2
�2n + 1�2�cosh�2��12 − �23��

− 2��1

�2
+

�2

�3
�cosh��2n + 1���12 − �23�� + �2n + 1�


 �1 +
�1

�3
�sinh�2��12 − �23�� − 2�1 +

�1

�3
�


sinh��2n + 1���12 − �23�� −
�1

�2
�2n − 1��n +

3

2
� .

�A37�

Bn and Cn are to be determined in Appendix C by the no-slip
boundary condition.

APPENDIX B: CYLINDRICAL COORDINATE SYSTEM

We select the cylindrical coordinate system �R ,z� whose
origin lies on the center of the outer sphere of the compound
drop. Coordinate transformation is written as

R = c
sin �

cosh � − cos �
,

�B1�

z = z� −
c

tanh �23
= c

sinh �

cosh � − cos �
−

c

tanh �23
.

General solution for axisymmetric Stokes flow of phase 3 in
cylindrical coordinate system is taken as the following sepa-
rate variable form of stream function:11

��R,z� = �
0

	

�RK1�aR�f1�a� + R2K0�aR�F1�a�

+ RI1�aR�g1�a� + R2I0�aR�G1�a��cos�az�da

+ �
0

	

�RK1�aR�f2�a� + R2K0�aR�F2�a�

+ RI1�aR�g2�a� + RI0�aR�G2�a��sin�az�da

+ c1R4 + c2R4z + c3R2 + c4R2z + c5R2z2

+ c6R2z3 + c7z + c8z2 + c9z3, �B2�

where K0 and K1 are modified Bessel functions of the second
kind while I0 and I1 are modified Bessel functions of the first
kind. The subscripts of the Bessel functions represent their
order. f1, F1, g1, G1, f2, F2, g2, and G2 are arbitrary derivable
functions, c1–c9 are integration constants. To satisfy bound-
ary condition �viii� described in Sec. II, Eq. �B2� is reduced
to be

��R,z� = �
0

	

�RK1�aR�f1�a� + R2K0�aR�F1�a�

+ RI1�aR�g1�a� + R2I0�aR�G1�a��cos�az�da

+ �
0

	

�RK1�aR�f2�a� + R2K0�aR�F2�a�

+ RI1�aR�g2�a� + RI0�aR�G2�a��sin�az�da

+
�2W + U�R2

2
−

�W + U�R4

2R0
2 . �B3�
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The no-slip boundary condition at R=R0 for any real value
of z leads to

�
0

	

�R0K1�aR0�f1�a� + R0
2K0�aR0�F1�a� + R0I1�aR0�g1�a�

+ R0
2I0�aR0�G1�a��cos�az�da + �R0K1�aR0�f2�a�

+ R0
2K0�aR0�F2�a� + R0I1�aR0�g2�a�

+ R0
2I0�aR0�G2�a��sin�az�da = 0. �B4�

Substituting z by an arbitrary nonzero value and its opposite
number into Eq. �B4�, either of the two integral parts in Eq.
�B4� is zero for any z. Thus, the following two expressions
exist:

�
0

	

�R0K1�aR0�f1�a� + R0
2K0�aR0�F1�a� + R0I1�aR0�g1�a�

+ R0
2I0�aR0�G1�a��da = 0, �B5�

�
0

	

�R0K1�aR0�f2�a� + R0
2K0�aR0�F2�a� + R0I1�aR0�g2�a�

+ R0
2I0�aR0�G2�a��da = 0. �B6�

We write the following expressions based on Eqs. �B5� and
�B6�:

g1�a� = �−
2

a
S2 − S4� · f1�a� − R0

2S2F1�a�,

�B7�
G1�a� = S2f1�a� + S4F1�a� ,

g2�a� = �−
2

a
S2 − S4� · f2�a� − R0

2S2F2�a�,

�B8�
G2�a� = S2f2�a� + S4F2�a� ,

where S2 and S4 are expressed as

S2 =
1

aR0
2 ·

1

�I1�aR0��2 − I0�aR0� · I2�aR0�
, �B9�

S4 =
I1�aR0� · K1�aR0� + I2�aR0� · K0�aR0�

�I1�aR0��2 − I0�ab� · I2�aR0�
. �B10�

Following Haberman and Sayre,11 we expand f1, F1, g1, G1,
f2, F2, g2, and G2 in the form of Taylor series as

f1�a� = �
n=0

	

an · a2n+1, F1�a� = �
n=0

	

bn · a2n,

�B11�

f2�a� = �
n=0

	

cn · a2n+2, F2�a� = �
n=0

	

dn · a2n+1.

In order to guarantee nonsingularity of the stream function
expressed in Eq. �B3�, some terms of the exponential series
are omitted in Eq. �B11�. The reason will be given later in
this section.

Then, substituting

Im�x� = �
k=0

	
1

k!��m + k + 1�
· � x

2
�m+2k

�B12�

into the following two-variable functions:

�1�R,z� = �
0

	

�RI1�aR�g1�a� + R2I0�aR�G1�a�+�


cos�az�da , �B13�

�2�R,z� = �
0

	

�RI1�aR�g2�a� + RI0�aR�G2�a��sin�az�da ,

�B14�

we have the Taylor expansion at the origin point �0,0� as

�1�R,z� = �
L=1

	 
�0
	g1�a�a2L−1da

22L−1L!�L − 1�!
+

�0
	G1�a�a2L−2da

22L−2�L − 1�!�L − 1�!�
· R2L · �

m=0

	

�− 1�m z2m

�2m�!
, �B15�

�2�R,z� = �
L=1

	 
�0
	g2�a�a2L−1da

22L−1L!�L − 1�!
+

�0
	G2�a�a2L−2da

22L−2�L − 1�!�L − 1�!�
· R2L · �

m=0

	

�− 1�m z2m+1

�2m + 1�!
. �B16�

It should be noted that the series in Eqs. �B15� and �B16� are
not uniformly convergent. The terms of the series must be
arranged in a specific order to guarantee convergence. It is
obvious that under spherical coordinate system, series terms
rnCn

−1/2�cos �� of the general solution of the stream function
��r ,�� are convergent. We find that the sum of terms includ-
ing R2Lz2m�2L+2m=n� in Eqs. �B15� and �B16� corresponds
exactly to the series term rnCn

−1/2�cos ��. Therefore, the con-
vergence problem is solved by organizing the sum of Eqs.
�B15� and �B16� in this order: first, we sum all terms like
R2Lz2m where 2L+m is a constant value n; second, we do the
sum for n from 1 to 	. Besides, substituting Eqs. �B7�, �B8�,
and �B11� into Eqs. �B15� and �B16�, �1�R ,z� and �2�R ,z�
are finally expressed as

�1�R,z� = �
N=1

	

�
k=0

N−1 �ak�
L=1

N �2 −
2

L
�S2,2N+2k−1 −

1

L
S4,2N+k+1

R0
2N+2k22L−1�L − 1�!�L − 1�!

+ bk�
L=1

N 2S4,2N+2k−1 −
1

L
S2,2N+2k−1

R0
2N+2k−222L−1�L − 1�!�L − 1�!�


 R2L�
m=0

N−L

�− 1�m z2m

�2m�!
, �B17�
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�2�R,z� = �
N=1

	

�
k=0

N−1 �ck�
L=1

N �2 −
2

L
�S2,2N+2k+1 −

1

L
S4,2N+2k+3

R0
2n+2k+222L−1�L − 1�!�L − 1�!

+ dk�
L=1

N 2S4,2N+2k+1 −
1

L
S2,2N+2k+1

R0
2N+2k22L−1�L − 1�!�L − 1�!�


 R2L�
m=0

N−L

�− 1�m z2m+1

�2m + 1�!
, �B18�

where

S2,n = �R0
2�

0

	

aS2�aR0�n−1d�aR0� , �n � 1� ,

0, �n = 1� ,
� �B19�

S4,n = ��0

	

S4�aR0�n−1d�aR0� , �n � 1� ,

�
0

	 I1k1 − I2K0 − 1
2

I1
2 − I0I2

d�aR0� , �n � 1� .� �B20�

The integral constant S2,n and S4,n can be evaluated numeri-
cally to any precision.

Now we express �3�R ,z� and �4�R ,z� as

�3�R,z� = �
0

	

�RK1�aR�f1�a�

+ R2K0�aR�F1�a��cos�az�da

= �
0

	 
�
n=0

	

anRK1�aR�a2n+1

+ �
n=0

	

bnR2K0�aR�a2n�cos�az�da , �B21�

�4�R,z� = �
0

	

�RK1�aR�f2�a�

+ R2K0�aR�F2�a��sin�az�da

= �
0

	 
�
n=0

	

cnRK2�aR�a2n+2

+ �
n=0

	

dnR2K0�aR�a2n+1�sin�az�da . �B22�

Therefore,

��R,z� = �1�R,z� + �2�R,z� + �3�R,z� + �4�R,z�

+
�2W + U�R2

2
−

�W + U�R4

2
. �B23�

By successive differentiation of the two following identities
with respect to z �Ref. 17�:

�
0

	

R2K0�aR�cos�az�da =
�

2

R2

�R2 + z2�1/2 , �B24�

�
0

	

aRK1�aR�cos�az�da =
�

2

R2

�R2 + z2�3/2 , �B25�

we obtain

�
0

	

a2jR2K0�aR�cos�az�da =
�

2 �
i=0

j
c2j,iR

2�i+1�

�R2 + z2� j+i+1/2 ,

�B26�

�
0

	

a2j+1R2K0�aR�sin�az�da =
�

2 �
i=0

j
c2j+1,iR

2�i+1�z

�R2 + z2� j+i+3/2 ,

�B27�

�
0

	

a2j+1RK1�aR�cos�az�da =
�

2 �
i=0

j
d2j+1,iR

2�i+1�

�R2 + z2� j+i+3/2 ,

�B28�

�
0

	

a2j+2RK1�aR�sin�az�da =
�

2 �
i=0

j
d2j+2,iR

2�i+1�z

�R2 + z2� j+i+5/2 ,

�B29�

where cj,i and dj,i are constants to be determined, and the
subscripts � and j are integers starting from zero. The recur-
rence formulas about cj,i and dj,i are

c2j+1,i = �2j + 2i + 1�c2j,i,

c2j+2,i = �2j + 2i + 1�c2j+1,i−1 − 2�j + i + 1�c2j+1,i,

�B30�
c2j+2,j+1 = �4j + 3�c2j+1,j,

c2j+2,0 = − 2�j + 1�c2j+1,0 �i = 1,2,3, . . . , j� ,
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d2j+2,i = �2j + 2i + 3�d2j+1,i,

d2j+3,i = �2j + 2i + 3�d2j+2,i−1 − 2�j + i + 2�c2j+2,i,

�B31�
d2j+3,j+1 = �4j + 5�d2j+2,j,

d2j+3,0 = − 2�j + 2�d2j+2,0 �i = 1,2,3, . . . , j� .

The integrals �0
	a2j+1R2K0�aR�cos�az�da,

�0
	a2jR2K0�aR�sin�az�da, �0

	a2jRK1�aR�cos�az�da, and
�0

	a2j+1RK1�aR�sin�az�da lead to infinite axial velocity at the
axis of the circular tube, if they serve as parts of the stream
function. Therefore, they must be omitted from the solution,
yielding the expressions in Eq. �B11�.

APPENDIX C: TRANSFORMATION BETWEEN
CYLINDRICAL AND BIPOLAR COORDINATE SYSTEMS

Since �1�R ,z� and �2�R ,z� are in the form of sum of
R2Lzm for L�0, m�0 and z=z�−c / tanh �23, where L and m
are integers, we first convert the term R2Lz�m to the form of
�cosh �−cos ��−3/2 ·�n=1

	 �n��� ·Cn+1
−1/2�cos �� under bipolar

coordinate system. The definition and properties of
Gegenbauer polynomials are18

1

�1 − 2xt + t2�� = �
n=0

	

Cn
��x�tn, �C1�

for � � − 1/2:��−1

1

�1 − x2��−1/2Cn
��x�Cm

� �x�dx = 0 for m � n ,

�
−1

1

�1 − x2��−1/2Cn
��x�Cn

��x�dx =
21−2�� · ��n + 2��

�n + ���2�����n + 1�
for m = n , � �C2�

for � = − 1/2 and m,n � 1:��−1

1 Cn
−1/2�x�Cm

−1/2�x�dx

1 − x2 = 0 for m � n ,

�
−1

1 Cn
−1/2�x�Cm

−1/2�x�dx

1 − x2 =
2

�2n − 1�n�n − 1�
for m = n , � �C3�

d

dx
Cn

��x� = 2�Cn
�+1�x� , �C4�

�n + ��Cn
��x� = �Cn

�+1�x� , �C5�

nCn
��x� = 2�n + � − 1�xCn−1

� �x� − �n + 2� − 2�Cn−2
� �x� . �C6�

Due to orthogonality of Gegenbauer polynomials given in Eqs. �C2� and �C3�, �n��� �n�0� is written as

�n��� =
n�n + 1��2n + 1�

2
�

−1

1

c2L+m �1 − x2�L−1Cn+1
−1/2�x�

�cosh � − x�2L+m−1/2dx , �C7�

where x=cos �. Through integration by parts and substitution of Eq. �C6� into Eq. �C7�, we obtain

�n��� =
n�n + 1��2n + 1�

2

 �

−1

1 c2L+m�1 − x2�L−2

�cosh � − x�2L+m−3/2 ·
�n + 2L − 1��n + 2�Cn+2

−1/2�x� − �n − 2L + 2��n − 1�Cn
−1/2�x�

�2L + m − 5
2� · �2n + 1�

dx . �C8�

We perform the above process L−1 times for Eq. �C7�, yielding

�n��� =
n�n + 1��2n + 1�

2
�

−1

1 1

�i=1
L−12L + m − i − 3

2

·
c2L+m

�cosh � − x�L+m−1/2 · �
i=1

L

�n,L,iCn−L+2i
−1/2 dx , �C9�

where �n,L,i is a constant to be determined. Using integration by parts and with the help of Eq. �C4�, we convert Eq. �C9� to

�n��� =
n�n + 1��2n + 1�

2
�

−1

1 1

�i=1
L 2L + m − i − 3

2

·
c2L+m sinhm �

�cosh � − x�L+m−3/2 · �
i=1

L

�n,L,iPn−L+2i−1dx , �C10�
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where Pn�x� is the Gegenbauer polynomials of degree 1/2,
i.e., Legendre polynomials of the first kind. The factor
�cosh �−x�−�L+m−3/2� in Eq. �C10� can be expanded through
the generation function of Gegenbauer polynomials of
Eq. �C1� as

1

�cosh � − x�L+m−3/2

= �
j=0

	

2L+m−3/2e−�j+L+m−3/2��Cj
L+m−3/2�x� �� � 0� . �C11�

By recursive substitution of Eq. �C5�, we obtain

Cn
L+m−3/2�x� = 
n,L+m,1Cn

1/2�x� + 
n,L+m,2Cn−2
1/2 �x�

+ 
n,L+m,4Cn−4
1/2 �x� + ¯ for L,m � 1, �C12�

where Cn
1/2�x� is Pn�x�, and 
n,L+m,1, 
n,L+m,2¯ are constants

to be determined. Due to orthogonality of Pn�x�,

�
−1

1

Pn�x�Pm�x�dx = � 2

2n + 1
�m = n� ,

0 �m � n� ,
� �C13�

it is obvious that �n��� only consists of terms including
different integer exponents of e−�/2. Since �1�R ,z� and
�2�R ,z� are stream functions under cylindrical coordinate
system, they must satisfy the general solution form when
converted under bipolar coordinate system. Therefore, we
only retain the terms of e−�n−1/2�� and e−�n+3/2�� in �n���,
while other terms of �n��� must offset each other when
summed together. We denote the retained terms in �n��� as
�n

����, which can be derived from Eqs. �C10�–�C13� as

�n
���� =

2L−3/2c2L+mn�n + 1��2n + 1�
qL,m

· ��n,L,1
n−L+1,L+m,1

2n − 2L + 3
e−�n−1/2��

+ 
�n,L,2
n−L+3,L+m,1

2n − 2L + 7
+

�n,L,1�
n−L+3,L+m,2 − m
n−L+1,L+m,1�
2n − 2L + 3

�e−�n+3/2��� , �C14�

where

qL,m = �
i=1

L

2L + m − i −
3

2
, �C15�

�n,L,1 = �− 1�L−1�
i=1

L−1
�n − 2L + i + 1��n − i�

2n − 2i + 3
, �C16�

�n,L,2 = �− 1�L�
i=0

L−2 
�
j=1

i
�n − 2L + j + 1��n − j�

2n − 2j + 3 � 

�n + 2L − 3i − 1��n − i + 2�

2n − 2i + 1

 
�

j=i

L−3
�n − 2L + j + 5��n − j�

2n − 2j + 3 � , �C17�


n,L+m,1 =� �
i=1

L+m−2
n + L + m − i − 3

2

L + m − i − 3
2

�L + m � 1� ,

−
1

2n − 1
�L = 1, m = 0� ,

0 �n � 0� ,
� �C18�


n,L+m,2 =� �
i=0

L+m−3 
�
j=1

i
n + L + m − j − 3

2

L + m − j − 3
2
� 


n + L + m − i − 9
2

L + m − i − 5
2


 
 �
j=i+2

L+m−2
n + L + m − j − 7

2

L + m − j − 3
2
� , �L + m � 1� ,

1

2n − 1
, �L = 1, m = 0� ,

0, �n � 0� .
� �C19�

Substituting Eq. �C14� into Eqs. �B17� and �B18�, we finally obtain the expressions of �1 and �2 under bipolar coordinate
system as
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�1�R,z� = �
N=1

	

�
k=0

N−1 �ak�
L=1

N �2 −
2

L
�S2,2N+2k−1 −

1

L
S4,2N+k+1

R0
2N+2k22L−1�L − 1�!�L − 1�!

+ bk�
L=1

N 2S4,2N+2k−1 −
1

L
S2,2N+2k−1

R0
2N+2k−222L−1�L − 1�!�L − 1�!�


 �
m=0

N−L
�− 1�m

�2m�!
�cosh � − cos ��−3/2�

n=1

	

Cn+1
−1/2�cos ��

2L−3/2c2L+2mn�n + 1��2n + 1�
qL,2m


 ��n,L,1
n−L+1,L+2m,1

2n − 2L + 3
e−�n−1/2�� + 
�n,L,1�
n−L+3,L+2m,2 − 2m
n−L+1,L+2m,1�

2n − 2L + 3
+

�n,L,2
n−L+3,L+2m,1

2n − 2L + 7
�e−�n+3/2��� ,

�C20�

�2�R,z� = �
N=1

	

�
k=0

N−1 �ak�
L=1

N �2 −
2

L
�S2,2N+2k−1 −

1

L
S4,2N+k+1

R0
2N+2k22L−1�L − 1�!�L − 1�!

+ bk�
L=1

N 2S4,2N+2k−1 −
1

L
S2,2N+2k−1

R0
2N+2k−222L−1�L − 1�!�L − 1�!�


 �
m=0

N−L
�− 1�m

�2m + 1�!
�cosh � − cos ��−3/2�

n=1

	

Cn+1
−1/2�cos ��

2L−3/2c2L+2m+1n�n + 1��2n + 1�
qL,2m+1


 ��n,L,1
n−L+1,L+2m+1,1

2n − 2L + 3
e−�n−1/2�� + ��n,L,1�
n−L+3,L+2m+1,2 − �2m + 1�
n−L+1,L+2m+1,1�

2n − 2L + 3

+
�n,L,2
n−L+3,L+2m+1,1

2n − 2L + 7
��e−�n+3/2��. �C21�

Now we deal with the integrals related to the second kind of modified Bessel functions in �3�R ,z� and �4�R ,z�. First, like what
we do previously in this section, we convert the term R2�i+1� / �R2+z2� j+i+1/2 in Eqs. �B26� and �B28� to the form like
�cosh �−cos ��−3/2 ·�n=1

	 �n,1��� ·Cn+1
−1/2�cos �� under bipolar coordinate system. Using the relationship between the two coor-

dinate systems, we get

R2 + z2 =
c2 sin2 �

�cosh � − cos ��2 +
c2 sinh2 �

�cosh � − cos ��2 −
2c2 sinh � cosh �23

sinh �23�cosh � − cos ��
+

c2 cosh2 �23

sinh2 �23
=

c2�cosh�� − 2�23� − cos ��
sinh2 �23�cosh � − cos ��

.

�C22�

Therefore, �n,1��� is expressed as

�n,1��� =
n�n + 1��2n + 1�

2

sinh2j+2i+1 �23

c2j−1 �
−1

1 �1 − x2�2i�cosh � − x� j−i

�cosh�� − 2�23� − x�i+j+1/2Cn+1
−1/2�x�dx . �C23�

Applying a little algebra transformation cosh �−x=cosh��−2�23�−x+2 sinh��−�23�sinh �23 to Eq. �C23�, we obtain

�n,1��� =
n�n + 1��2n + 1�

2

sinh2j+2i+1 �23

c2j−1 
 �
−1

1

�
k=0

j−i �1 − x2�2i�2 sinh�� − �23�sinh �23�kCn+1
−1/2�x�

�cosh�� − 2�23� − x�2i+k+1/2 � j − i

k
�dx . �C24�

It is easy to observe from Eq. �C24� that �n,1��� only consists of terms with different integer exponents of e�n−1/2���−2�23� and
e�n+3/2���−2�23�, which is similar to what appears in the transformation for R2Lz�m. Thus, we likewise retain only the terms of
integer exponents of e�n−1/2���−2�23� and e�n+3/2���−2�23� in �n,1��� to form �n,1

� ���. We derived �n,1
� ��� from Eqs. �C11�–�C13�

and �C24� as

�n,1
� ��� =

2i−1/2�n + 1��2n + 1�sinh2j+2i+1 �23

c2j−1qi+1,k
�
k=0

j−i � j − i

k
��e−2�23 − 1�k��n,i+1,1
n−i,i+k+1,1

2n − 2i + 1

 e�n−1/2���−2�23�

+ 
�n,i+1,1�
n−i+2,i+k+1,2 − ke2�23
n−i,i+k+1,1�
2n − 2i + 1

+
�n,i+1,2
n−i+2,i+k+1,1

2n − 2i + 5
� 
 e�n+3/2���−2�23�� . �C25�

Second, after transforming the term R2�i+1�z / �R2+z2� j+i+3/2 in Eqs. �B27� and �B29� into the form like �cosh �
−cos ��−3/2 ·�n=1

	 �n,2��� ·Cn+1
−1/2�cos ��, we obtain
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�n,2��� =
n�n + 1��2n + 1�sinh2j+2i+3 �23

2c2j �
−1

1 ��
k=0

j−i
�1 − x2�2i�2 sinh�� − �23�sinh �23�ksinh �

�cosh�� − 2�23� − x�2i+k+3/2 � j − i

k
�

− �
k=0

j−i+1
�1 − x2�2i�2 sinh�� − �23�sinh �23�k

�cosh�� − 2�23� − x�2i+k+1/2tanh �23
� j − i + 1

k
��Cn+1

−1/2�x�dx . �C26�

In the same way, �n,2
� ��� is written as

�n,2
� ��� =

2i−1/2�n + 1��2n + 1�sinh2j+2i+3 �23

c2j ��
k=0

j−i � j − i

k
�− �e−2�23 − 1�k

e2�23qi+1,k+1

�n,i+1,1
n−i,i+k+2,1

�2n − 2i + 1�

 e�n−1/2���−2�23�

+ ��n,i+1,1�
n−i+2,i+k+2,2 − �ke2�23 + e4�23�
n−i,i+k+2,1�
2n − 2i + 1

+
�n,i+1,2
n−i+2,i+k+2,1

2n − 2i + 5
� 
 e�n+3/2���−2�23��

− �
k=0

j−i+1 � j − i + 1

k
� �e−2�23 − 1�k

qi+1,k tanh �23

�n,i+1,1
n−i,i+k+1,1

�2n − 2i + 1�
e�n−1/2���−2�23�

+ ��n,i+1,1�
n−i+2,i+k+1,2 − ke2�23
n−i,i+k+1,1�
2n − 2i + 1

+
�n,i+1,2
n−i+2,i+k+1,1

2n − 2i + 5
�e�n+3/2���−2�23��� . �C27�

By the aid of Eqs. �C26� and �C27�, we may easily write the coefficients of the terms e�n−1/2���−2�23� and e�n+3/2���−2�23� for
stream function ��R ,z� in Eq. �B3�, which is expanded under bipolar coordinate system. Excluding the part for Poiseuille flow
�W+U /2�R2− �W+U�R4 /2, the coefficient of e�n−1/2���−2�23� is

�
j=0

	

bj�
i=0

j

c2j,i
2i−1/2�n + 1��2n + 1�sinh2j+2i+1 �23

c2j−1qi+1,k
�
k=0

j−i � j − i

k
��e−2�23 − 1�k�n,i+1,1
n−i,i+k+1,1

2n − 2i + 1

− �
j=0

	

dj�
i=0

j

c2j+1,i
2i−1/2�n + 1��2n + 1�sinh2j+2i+3 �23

c2j



�
k=0

j−i � j − i

k
� �e−2�23 − 1�k

e2�23qi+1,k+1

�n,i+1,1
n−i,i+k+2,1

2n − 2i + 1
+ �

k=0

j−i+1 � j − i + 1

k
� �e−2�23 − 1�k

qi+1,k tanh �23

�n,i+1,1
n−i,i+k+1,1

2n − 2i + 1 �
+ �

j=0

	

aj�
i=0

j

d2j+1,i
2i−1/2�n + 1��2n + 1�sinh2j+2i+3 �23

c2j+1qi+1,k
�
k=0

j−i � j − i + 1

k
��e−2�23 − 1�k�n,i+1,1
n−i,i+k+1,1

2n − 2i + 1

− �
j=0

	

cj�
i=0

j

d2j+2,i
2i−1/2�n + 1��2n + 1�sinh2j+2i+5 �23

c2j+2 
�
k=0

j−i � j − i + 1

k
� �e−2�23 − 1�k

e2�23qi+1,k+1

�n,i+1,1
n−i,i+k+2,1

2n − 2i + 1 �
+ �

k=0

j−i+1 � j − i + 2

k
� �e−2�23 − 1�k

qi+1,k tanh �23

�n,i+1,1
n−i,i+k+1,1

2n − 2i + 1
. �C28�

For e�n+3/2���−2�23�, the coefficient is

�
j=0

	

bj�
i=0

j

c2j,i
2i−1/2�n + 1��2n + 1�sinh2j+2i+1 �23

c2j−1qi+1,k
�
k=0

j−i � j − i

k
��e−2�23 − 1�k



�n,i+1,2
n−i+2,i+k+1,1

2n − 2i + 5
+

�n,i+1,1�
n−i+2,i+k+1,2 − ke2�23
n−i,i+k+1,1�
2n − 2i + 1

�
− �

j=0

	

dj�
i=0

j

c2j+1,i
2i−1/2�n + 1��2n + 1�sinh2j+2i+3 �23

c2j ��
k=0

j−i � j − i

k
� �e−2�23 − 1�k

e2�23qi+1,k+1

�n,i+1,2
n−i+2,i+k+2,1

2n − 2i + 5

+
�n,i+1,1�
n−i+2,i+k+2,2 − �ke2�23 + e4�23�
n−i,i+k+2,1�

2n − 2i + 1
� + �

k=0

j−i+1 � j − i + 1

k
� �e−2�23 − 1�k

qi+1,k tanh �23


 
�n,i+1,2
n−i+2,i+k+1,1

2n − 2i + 5
+

�n,i+1,1�
n−i+2,i+k+1,2 − ke2�23
n−i,i+k+1,1�
2n − 2i + 1

��
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+ �
j=0

	

aj�
i=0

j

d2j+1,i
2i−1/2�n + 1��2n + 1�sinh2j+2i+3 �23

c2j+1qi+1,k
�
k=0

j−i � j − i

k
��e−2�23 − 1�k



�n,i+1,2
n−i+2,i+k+1,1

2n − 2i + 5
+

�n,i+1,1�
n−i+2,i+k+1,2 − ke2�23
n−i,i+k+1,1�
2n − 2i + 1

�
− �

j=0

	

cj�
i=0

j

d2j+2,i
2i−1/2�n + 1��2n + 1�sinh2j+2i+5 �23

c2j+2 ��
k=0

j−i � j − i

k
� �e−2�23 − 1�k

e2�23qi+1,k+1

�n,i+1,2
n−i+2,i+k+2,1

2n − 2i + 5

+
�n,i+1,1�
n−i+2,i+k+2,2 − �ke2�23 + e4�23�
n−i,i+k+2,1�

2n − 2i + 1
�� + �

k=0

j−i+1 � j − i + 1

k
� �e−2�23 − 1�k

qi+1,k tanh �23


 
�n,i+1,2
n−i+2,i+k+1,1

2n − 2i + 5
+

�n,i+1,1�
n−i+2,i+k+1,2 − ke2�23
n−i,i+k+1,1�
2n − 2i + 1

� . �C29�

By combination of Eqs. �B3�, �C20�, �C21�, �C28�, and
�C29�, we completely transform the stream function ��R ,z�
into the form under bipolar coordinate system. Since ��R ,z�
and ��3��� ,�� are equivalent functions under different coor-
dinate systems, each term of the series in ��3� must be ex-
actly equal to that of the expansion form of ��R ,z� under
bipolar coordinate system. Therefore, by equalizing the co-
efficients of e−�n−1/2��, e−�n+3/2��, e�n−1/2���−2�23�, and
e�n+3/2���−2�23� between ��3��� ,�� �expressed by Eq. �A19�
for ��0� and the expansion form of ��R ,z� under bipolar
coordinate system �Eqs. �B3�, �A23�, �A24�, �C20�, �C21�,
�C28�, and �C29��, we obtain a set of infinite algebra linear
equations like AX=b with variables aj, bj, cj, dj, Bn, and Cn.
If we limit N in Eqs. �C20� and �C21� to a finite even number
N�, and j in Eqs. �C28� and �C29� to N� /2, we in fact trun-
cate the stream function ��3��� ,��, which is equivalent to
truncate the stream function under spherical coordinate sys-
tem �r ,�� with the first N� terms. Therefore, the number of
variables to be determined becomes 4N�. Besides, for a spe-
cific n, the comparison of the coefficients �e−�n−1/2��,
e−�n+3/2��, e�n−1/2���−2�23�, and e�n+3/2���−2�23�� yields four linear
equations. Hence, n should be from 1 to N� to form 4N�

linear equations to make the equation set complete. The so-
lution precision can be as high as required by increasing N�.
As aj, bj, cj, and dj are determined, ��R ,z� is determined.
Thus, it is easy to deduce Bn

� and Cn
� in Eq. �A20� if the flow

field for ��0 is needed.
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