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1State Key Laboratory of Alternate Electrical Power System with Renewable
Energy Sources, North China Electric Power University, Beijing, People’s
Republic of China
2College of Storage & Transportation and Architectural Engineering, China
University of Petroleum (Hua Dong), Qingdao, ShanDong, People’s
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For unsteady two-phase flows, the most widely used numerical approaches for coupled sol-

ution of continuity and momentum equations are fractional-step methods and SIMPLE-

family algorithms. Fractional-step methods have advantages in their fast convergence rates,

while their disadvantages lie in conditional stability for initial-value problems. SIMPLE-

family algorithms are absolutely stable; however, their convergence rates are slow. To over-

come the shortcoming of traditional SIMPLE-family algorithms the, IDEAL algorithm is

proposed by the present authors. It is concluded that the IDEAL algorithm overcomes the

shortcoming of traditional SIMPLE-family algorithms, thus possessing two advantages of

fast convergence rate and absolute stability simultaneously.

1. INTRODUCTION

For unsteady two-phase flows, the main numerical solution methods include
particle trajectory models, two-fluid models, and interface-tracking methods. Among
these methods, the interface-tracking methods can most accurately reflect the inter-
face information. And the volume-of-fluid (VOF) [1,2] and level set (LS) methods
[3–5] are the most widely used interface-tracking methods in the literature. In 2010
a coupled volume-of-fluid and level-set (VOSET) method was proposal by the
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present authors [6] and later extended to phase-change heat transfer simulation [7],
which combines the advantages and overcomes the disadvantages of VOF and LS
methods. Therefore, the following research is based on the VOSET method.

For the unsteady two-phase flows studied in this article, on one hand, the
VOSET method is adopted to capture the phase interface; on the other hand, the
continuity and momentum equations have to be solved jointly. At present, the most
widely used numerical approaches for coupled solution of the continuity and
momentum equations are fractional-step methods [8–13] and SIMPLE-family algo-
rithms [14–20]. The fractional-step methods have advantages in their fast conver-
gence rates, while their disadvantages lie in conditional stability for initial-value
problems due to their explicit or semi-implicit schemes [21]. The SIMPLE-family
algorithms are absolutely stable for initial-value problems due to their implicit
schemes [21]; however, their convergence rates are slow. On the basis of the above
analyses to the fractional step methods and the SIMPLE-family algorithms, it can
be seen that they have complementary advantages and disadvantages, so it is an
inevitable trend to develop a method combining their advantages.

Recently the present authors proposed an efficient segregated algorithm called
IDEAL (inner doubly iterative efficient algorithm for linked equations) [22–25]. In
this algorithm there exist inner doubly iterative processes for the pressure equation
at each iteration level, which almost completely overcome two approximations in
SIMPLE algorithms. Thus, the coupling between velocity and pressure is fully guar-
anteed, greatly enhancing the convergence rate and stability of the solution process.
Therefore, the IDEAL algorithm is adopted to solve the unsteady two-phase flow
problems in this article. The IDEAL algorithm is the same as the traditional
SIMPLE-family algorithms in terms of absolute stability for initial-value problems.
In the following, the analysis will focus on whether the convergence rate of the
IDEAL algorithm is much faster than the rates of traditional SIMPLE-family algo-
rithms, further verifying whether the IDEAL algorithm can overcome the disadvan-
tages of the traditional SIMPLE-family algorithms.

NOMENCLATURE

C volume fraction

Co Courant number

d initial bubble diameter, m

Eo Eotvos number

Fsv surface tension force, N=m3

~gg gravity acceleration, m=s2

H smoothed Heaviside function

M Morton number

p pressure, Pa

RsMass mass residual

~uu velocity, m=s

c density ratio

dt time interval, s

D grid size, m

e width of transition region used for

smoothening, m

g dynamic viscosity, Pa s

j interface curvature, 1=m

q density, kg=m3

r surface tension coefficient, N=m

u viscosity ratio

/ signed distance function, m

Subscripts

g gas phase

l liquid phase

e width of transition region used for

smoothening

Superscripts

n current time level

nþ1 next time level
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As for the solution of algebraic equations formed by discretizing the governing
equations, an alternative direction implicit (ADI) method [21] has been widely used
in CFD=NHT since the 1980s. The ADI method requires less computing memory but
has low solution speed. With the rapid development of the computer industry and
CFD=NHT, a more efficient solution method is urgently needed. At present, Krylov
subspace methods [26], including Bi-CGSTAB [27,28], GMRES(m) [29], CGS [30],
TFQMR [31], QMR [32], and so on, have been the most important iteration techni-
ques for solving algebraic equations, due to their fast solution speeds. All of these
methods were compared with each other in [33]. It was found that, among these meth-
ods, the Bi-CGSTAB method is much more stable and more efficient. Therefore, the
Bi-CGSTAB method is used instead of the traditional ADI method to solve the
algebraic equations to further improve the convergence rate of the IDEAL algorithm.
To verify the superiority of the IDEALþBi-CGSTAB method, three different meth-
ods, SIMPLERþADI, IDEALþADI, and IDEALþBi-CGSTAB, are compared and
analyzed in this article. Here, SIMPLER [34] is a typical SIMPLE-family algorithm.

In the following, the governing equations are described first, and the major
solution procedures are briefly reviewed. Then the comparison conditions and the
convergence criterion are described, followed by a systemic comparison of the con-
vergence rate of three different methods. Finally, some conclusions are drawn.

2. GOVERNING EQUATIONS

For unsteady laminar incompressible two-phase flows, the interface-tracking
method just requires a set of governing equations over the whole domain. In the fol-
lowing, we will give the temporal discretization forms of the governing equations
directly.

The temporal discretization form of the volume fraction equation is expressed as

Cnþ1 � Cn

dt
þr � ð~uunCnÞ ¼ 0 ð1Þ

where n and nþ1 refer to the current time level and the next time level, respectively.
The temporal discretization forms of the continuity and momentum equations

are written as

r �~uunþ1 ¼ 0 ð2Þ

~uunþ1 �~uun

dt
þ~uunþ1r � ð~uunþ1Þ ¼ 1

qeð/nþ1Þ
f�rpnþ1

þr � geð/nþ1Þ½ðr~uunþ1Þ þ ðr~uunþ1ÞT� þ qeð/nþ1Þ g!þ Fnþ1
sv g

ð3Þ

The density, viscosity, and surface tension force in Eq. (3) are calculated by the
signed distance function / and expressed as

qeð/nþ1Þ ¼ qg 1�Heð/nþ1Þ
� �

þ qlHeð/nþ1Þ ð4Þ
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geð/nþ1Þ ¼ gg½1�Heð/nþ1Þ� þ glHeð/nþ1Þ ð5Þ

Fnþ1
sv ¼ rjð/nþ1Þdeð/nþ1Þr/nþ1 ð6Þ

where

jð/nþ1Þ ¼ r � r/nþ1

jr/nþ1j

 !
ð7Þ

deð/nþ1Þ ¼ dHeð/nþ1Þ
d/nþ1

ð8Þ

Heð/nþ1Þ ¼
0 if /nþ1 < �e
1
2 1þ /nþ1

e � 1
p sin

p/nþ1

e

� �h i
if � e � j/nþ1j � e

1 if /nþ1 > e

8><
>: ð9Þ

In Eq. (9), e denotes the width of transition region used for smoothening and equals
1.5d, where drepresents the grid size.

3. SOLUTION PROCEDURE

For the unsteady two-phase flows studied in this article, on one hand, the
VOSET method is used to capture the phase interface and calculate the density,
viscosity, and surface tension force; on the other hand, three different methods,
SIMPLERþADI, IDEALþADI, and IDEALþBi-CGSTAB, are adopted for the
coupled solution of the continuity and momentum equations. The brief solution
procedures are described as follows.
Step 1. Solve Eq. (1) by the PLIC method to obtain the volume fraction Cnþ1.
Step 2. Based on Cnþ1, calculate the signed distance function /nþ1 near the interfaces
by the iterative geometric operation.
Step 3. Based on /nþ1, calculate the density qe(/

nþ 1), viscosity ge(/
nþ 1), and sur-

face tension force Fnþ1
sv according to Eqs. (4), (5), and (6).

Step 4. Use three different methods, SIMPLERþADI, IDEALþADI, and
IDEALþBi-CGSTAB to solve Eqs. (2) and (3), and then obtain the velocity ~uunþ1.
Step 5. Regard Cnþ1 and ~uunþ1 as Cn and ~uun, then return to Step 1.
Repeat Steps 1–5 until the time reaches the preset value.

In Steps 1–3, we adopt the VOSET method to capture the interface and calcu-
late the density, viscosity, and surface intension, and this method has been intro-
duced in detail in [6]. In Step 4, the detailed solution procedures of SIMPLER,
IDEAL, ADI, and Bi-CGSTAB have been respectively introduced in [34], [35],
[21], and [28].
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4. COMPARISON CONDITIONS AND CONVERGENCE CRITERION

In order to perform effective comparisons among SIMPLERþADI,
IDEALþADI, and IDEALþBi-CGSTAB, comparison conditions and convergence
criteria should be specified, which are described as follows.

1. Hardware and codes. All the calculations are performed on the computer of CPU
2.53GHz and RAM 1.92 GB along with FORTRAN 77 compiler. For compari-
son, the codes of the SIMPLERþADI, IDEALþADI, and IDEALþBi-CGSTAB
methods are compiled under the same program structure. In order to reduce the
truncated errors, double-precision digital is adopted to implement computation
in our codes.

2. Discretization scheme. In order to guarantee the stability and accuracy of numerical
solutions, the MUSCL scheme [36] is adopted for the convection term in Eq. (3),
which is at least of second-order accuracy and absolutely stable. And the
deferred-correctionmethod is adopted to further ensure the stability of computations.

3. Underrelaxation factor. In the simulation process of unsteady two-phase flows,
the time-step size is very small, and the velocities and pressures at the adjacent
time levels change just a little, so the solution process is stable compared with
the steady flows. For this reason, the underrelaxation factors for velocity and
pressure are all set to be unity.

4. Inner iteration times. In the IDEAL algorithm, the first inner iteration times N1
and the second inner iteration times N2 are set as 4 and 4 in this article.

5. Time step. The Courant number (Co) is defined by Eq. (10) as

Co ¼ dt
D=j~uuj ð10Þ

where D is the grid size and j~uuj is the absolute value of velocity. A maximum Courant
number of 0.1 is set in the present calculation, and a variable time step dt is used
based on the fixed Courant number of 0.1.

6. Convergence criterion. The maximum mass residual and the maximum u,v-
component momentum residuals are all set to be less than 10�13.

5. NUMERICAL COMPARIONS AND ANALYSES

In the following sections, the convergence rates of SIMPLERþADI,
IDEALþADI, and IDEALþBi-CGSTAB are compared for four unsteady
two-phase-flow problems.

5.1. Problem 1: Single Gas Bubble Rising

A single gas bubble rising in an infinite quiescent liquid was analyzed by Grace
[37] using a large amount of experimental data from different investigators. It was
concluded that four independent dimensionless parameters determine the single
gas bubble rising performance. They are Morton number (M), Eotvos number
(Eo), viscosity ratio (/), and density ratio (a), which are defined as

208 D. L. SUN ET AL.

D
ow

nl
oa

de
d 

by
 [

D
al

ia
n 

U
ni

ve
rs

ity
 o

f 
T

ec
hn

ol
og

y]
 a

t 0
1:

50
 1

8 
M

ay
 2

01
5 



M ¼ gg4
l

qlr3
ð11Þ

Eo ¼ gd2ðql � qgÞ
r

ð12Þ

/ ¼ gl

gg

ð13Þ

c ¼ ql
qg

ð14Þ

where the subscripts g and l denote the gas phase, and the liquid phase respectively,
and d refers to initial bubble diameter.

Here, the domain size is set as 0.05m� 0.15m and a single gas bubble with
diameter 0.01m is released from the position (0.025m, 0.02m). The grid number
is 50� 150 with free slip boundary condition on the surrounding walls. Three cases
are studied: Eo¼ 1.0 and M¼ 0.001 for case 1, Eo¼ 10.0 and M¼ 0.1 for case 2,

Figure 1. Rising velocities of single gas bubble with time and bubble terminal shapes.
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Eo¼ 100.0 and M¼ 1,000.0 for case 3. In the three cases, both the density ratio a
and the viscosity ratio / are equal to 1,000:1.

Figure 1 shows the rising velocities of a single gas bubble with time computed
by SIMPLERþADI, IDEALþADI, and IDEALþBi-CGSTAB as well as the velo-
cities cited from [6]. It also shows the bubble terminal shapes calculated by
IDEALþBi-CGSTAB. As shown in this figure, the results calculated by the three
different methods are in excellent agreement with those reported in [6]. Those com-
parisons give some support to the reliability of these methods and the developed
codes.

Figure 2 shows the convergence histories of SIMPLERþADI, IDEALþADI,
and IDEALþBi-CGSTAB under the same iteration number for case 1. Because the
momentum residual has the same convergence history as the mass residual, for con-
venience, this figure just gives the variation curve of the mass residual. To complete
one time-level calculation, SIMPLERþADI requires 130 iterations during which
IDEALþADI can finish 7 time-level calculations. IDEALþBi-CGSTAB performs
better than IDEALþADI; as shown here, it can finish about 12 time-level calcula-
tions, i.e., it requires only about 11 iterations at each time level, verifying its
superiority.

Figure 2. Convergence histories of three different methods for case 1 of Problem 1.
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For three different cases of Problem 1, Tables 1 and 2 show the computation
times and the reducing ratio of computation time, respectively. It is found that the
computation time of IDEALþADI is 77.5–79.9% shorter than that of SIM-
PLERþADI, and the computation time of IDEALþBi-CGSTAB is further shorter
than that of IDEALþADI by 29.7–36.1%. Therefore, the computation time of
IDEALþBi-CGSTAB is shorter than that of SIMPLERþADI by 84.2–87.2%, i.e.,
its convergence rate is enhanced by 6–8 times.

5.2. Problem 2: Rising and Coalescence of Two Coaxial Gas Bubbles
in a Quiescent Liquid

The computation domain of this problem is a rectangular region with of size
0.05m� 0.15m, which is filled with quiescent liquid. Two coaxial gas bubbles with
diameters of 0.01m are released from positions (0.025m, 0.02m) and (0.025m,
0.035m) in this region. The grid number is 50� 150 with free-slip boundary condition
on the surrounding walls. The Eotvos and Morton numbers are equal to 10.0 and 0.1,
respectively, and both the density ratio and the viscosity ratio are 1,000:1.

Figure 3 shows the rising and coalescence of these two gas bubbles calcu-
lated by IDEALþBi-CGSTAB. Due to the relatively small drag force acting on
the trailing bubble, its rising velocity is rapid and its shape is slender compared
with the leading bubble. From this, the behavior of the trailing bubble is com-
pletely different from the leading bubble, in accordance with the bubble dynamics
principle.

Figure 4 shows the convergence histories of SIMPLERþADI, IDEALþADI,
and IDEALþBi-CGSTAB under the same iteration number for Problem 2.
SIMPLERþADI requires 156 iterations to complete one time-level calculation;
IDEALþADI can complete about 7 time-level calculations under the same iteration
number; IDEALþBi-CGSTAB can accomplish about 17 time-level calculations, i.e.,
it requires only about 9 iterations at each time level.

Table 1. Computation times of three different methods for Problem 1

SIMPLERþADI IDEALþADI IDEALþBi-CGSTAB

Case 1 12,448 s 2,800 s 1,969 s

Case 2 12,260 s 2,465 s 1,574 s

Case 3 11,909 s 2,508 s 1,675 s

Table 2. Reducing ratio of computation time for Problem 1

Reducing ratio of

IDEALþADI over

SIMPLERþADI

Reducing ratio of

IDEALþBi-CGSTAB

over IDEALþADI

Reducing ratio of

IDEALþBi-CGSTAB

over SIMPLERþADI

Case 1 77.5% 29.7% 84.2%

Case 2 79.9% 36.1% 87.2%

Case 3 78.9% 33.2% 85.9%
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Figure 3. Rising and coalescence of two coaxial gas bubbles in a quiescent liquid.

Figure 4. Convergence histories of three different methods for Problem 2.
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Tables 3 and 4 show, respectively, the computation times and corresponding
reducing ratios for Problem 2. For IDEALþADI, the reducing ratio of computation
time is 75.9% over SIMPLERþADI. The convergence performance of
IDEALþBi-CGSTAB is further improved, and its computation time is shorter than
that of IDEALþADI by 34.5%. Therefore, the computation time of
IDEALþBi-CGSTAB is shorter than that of SIMPLERþADI by 84.2%, i.e., its
convergence rate is enhanced by 6 times.

5.3. Problem 3: Droplet Falling and Collicting with Quiescent Liquid

The computation domain of this problem is a rectangular region of size
0.03m� 0.06m. Its bottom region is filled with quiescent liquid and the top region
is filled with quiescent gas. The liquid free-surface height is 0.009m. A liquid droplet
of 0.005m diameter is released from position (0.015m, 0.04m) and experiences two
stages, free falling and collision with quiescent liquid. The gas density qg¼ 1.205 kg=
m3 and viscosity gg¼ 1.81� 10�5 Pa.s. The liquid density ql¼ 998.2 kg=m3 and vis-
cosity gl¼ 1.004� 10�3 Pa.s. The gravity g¼ 9.8m=s2 and surface tension coefficient
r¼ 0.072N=m. Calculations are performed for computational grids of 100� 200
with free-slip boundary condition on the surrounding walls.

Figure 5 shows two processes: one is the droplet falling process before 0.075 s;
the other is the droplet collision process with the quiescent liquid after 0.075 s.
Figure 6 shows the theoretical solutions of the droplet falling velocity without
gas drag force (i.e., v¼ gt) and the results computed by SIMPLERþADI,
IDEALþADI, and IDEALþBi-CGSTAB. The calculation results agree very well
with the theoretical solutions at the beginning stage. With the advance of time,
the calculation results are gradually lower than the theoretical solutions. The reason
for this is that the gas drag force is considered in calculation results, while it is
neglected in theoretical solutions. To analyze further, because the droplet falling
velocity is low and the influence of the gas drag force is small at the beginning stage,
the calculation results are consistent with the theoretical solutions. As the gas drag
force increases gradually with increase of the droplet falling velocity, the calculation
results tend to be lower than the theoretical solutions. From this figure, we can also

Table 3. Computation times of three different methods for Problem 2

SIMPLERþADI IDEALþADI IDEALþBi-CGSTAB

12,196 s 2,936 s 1,924 s

Table 4. Reducing ratio of computation time for Problem 2

Reducing ratio of

IDEALþADI over

SIMPLERþADI

Reducing ratio of

IDEALþBi-CGSTAB

over IDEALþADI

Reducing ratio of

IDEALþBi-CGSTAB

over SIMPLERþADI

75.9% 34.5% 84.2%
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see that the results calculated by the three different methods agree with each other
very well. All of the above analyses verify the accuracy and feasibility of SIM-
PLERþADI, IDEALþADI, and IDEALþBi-CGSTAB.

Figure 7 shows the convergence histories of SIMPLERþADI, IDEALþADI,
and IDEALþBi-CGSTAB for Problem 3. SIMPLERþADI requires 249 iterations
to complete one time-level calculation; IDEALþADI can complete about 9 time-
level calculation under the same iteration number. Significantly, IDEALþBi-
CGSTAB can accomplish about 32 time-level calculations, i.e., it requires only about
8 iterations at each time level.

Figure 5. Droplet falling and its collision with quiescent liquid.

Figure 6. Droplet falling velocity with time before its collision with quiescent liquid.
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Tables 5 and 6 show, respectively, the computation times and reducing ratios
for Problem 3. The reducing ratio of computation time of IDEALþADI is 66.3%
over SIMPLERþADI, and the convergence performance of IDEALþBi-CGSTAB
is further improved due to its computation time being much shorter than that of
IDEALþADI, by 77.7%. So the computation time of IDEALþBi-CGSTAB is lar-
gely shorter than that of SIMPLERþADI, by 92.5%, i.e., its convergence rate is
enhanced by 13 times.

5.4. Problem 4: Dam Break Problem

Figure 8 shows the physical model of the dam break problem. A liquid column,
which has width 0.146m and height 0.292m, is stationary in the left side of a vessel

Figure 7. Convergence histories of three different methods for Problem 3.

Table 5. Computation times of three different methods for Problem 3

SIMPLERþADI IDEALþADI IDEALþBi-CGSTAB

89,852 s 30,275 s 6,764 s
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at the initial time. The width and height of the vessel are 4 times the width of the
initial liquid column. The liquid and background gas physical properties are
ql¼ 1.0� 103 kg=m3, ll¼ 0.5 Pa.s, qg¼ 1.0 kg=m3 and lg¼ 0.5� 10�3 Pa.s. The
gravity g¼ 9.8m=s2 and surface tension coefficient r¼ 0.0755N=m. Calculations
are performed for computational grids of 150� 150 with free-slip boundary
condition.

Figure 9 shows the dam break process calculated by IDEALþBi-CGSTAB.
The liquid column collapses due to the effect of gravity, and then it flows
toward the right side along the ground surface and collides with the right wall at
about 0.3 s.

Figure 10 shows the history of fluid front marching along the ground surface.
As shown here, the numerical results calculated by SIMPLERþADI, IDEALþADI,
and IDEALþBi-CGSTAB agree with each other very well, and these results have
only about 10% deviation from the experimental data [38]. It also can be found that
our simulation results are much closer to the experimental data compared with the
numerical results calculated by SOLA-VOF [1].

Figure 11 shows the convergence histories of SIMPLERþADI, IDEALþADI,
and IDEALþBi-CGSTAB for Problem 4. To complete one time-level calculation,
the iteration number of SIMPLERþADI reaches 1,842 times, during which
IDEALþADI completes about 10 time-level calculations and IDEALþBi-CGSTAB

Table 6. Reducing ratio of computation time for Problem 3

Reducing ratio of

IDEALþADI over

SIMPLERþADI

Reducing ratio of

IDEALþBi-CGSTAB over

IDEALþADI

Reducing ratio of

IDEALþBi-CGSTAB

over SIMPLERþADI

66.3% 77.7% 92.5%

Figure 8. Physical model of dam break problem.
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Figure 9. Dam break process.

Figure 10. History of fluid front marching along the ground surface.
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completes about 126 time-level calculations. To sum up, the convergence perfor-
mance of IDEALþBi-CGSTAB has been greatly improved, with 9 iterations at each
time level.

Tables 7 and 8 show, respectively, the computation times and reducing ratios
for Problem 4. The reducing ratio of computation time of IDEALþADI is 80.1%
over SIMPLERþADI. And compared with IDEALþADI, the computation time
of IDEALþBi-CGSTAB is further greatly shortened by 94.2%. Finally, the reducing
ratio of computation time of IDEALþBi-CGSTAB is up to 98.9% over SIM-
PLERþADI, i.e., its convergence rate is greatly increased, by 87 times.

Figure 11. Convergence histories of three different methods for Problem 4.

Table 7. Computation times of three different methods for Problem 4

SIMPLERþADI IDEALþADI IDEALþBi-CGSTAB

300,549 s 59,882 s 3,452 s
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6. CONCLUSIONS

For the unsteady two-phase flows studied in this article, on one hand, the
VOSET method is used to capture the interface and calculate the density, viscosity,
and surface tension force; on the other hand, three different methods, SIMPLERþ
ADI, IDEALþADI, and IDEALþBi-CGSTAB, are adopted for the coupled
solution of the continuity and momentum equations. The convergence rates of the
three different methods are compared for four unsteady two-phase-flow problems.
The conclusions are summarized as follows.

1. The computation time of IDEALþADI is shorter than that of SIMPLERþADI
by 66.3–80.1%.

2. The convergence performance of IDEALþBi-CGSTAB is further improved. Its
computation time is shortened by 29.7–94.2% compared to IDEALþADI.

3. The computation time of IDEALþBi-CGSTAB is shortened greatly. Its reducing
ratio of computation time over SIMPLERþADI is as high as 84.2–98.9%, i.e., its
convergence rate is greatly improved, by 6–87 times.

To conclude, the above analyses indicate that the IDEAL algorithm overcomes
the disadvantage of low convergence rate of the traditional SIMPLE-family algo-
rithms. Therefore, it can be concluded that the IDEAL algorithm possesses two
advantages of fast convergence rate and absolute stability simultaneously.
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