
Research Article
Performance Analyses of IDEAL Algorithm on Highly Skewed
Grid System

Dongliang Sun,1,2 Jinliang Xu,1,2 and Peng Ding3

1 Beijing Key Laboratory of Multiphase Flow and Heat Transfer, North China Electric Power University, Beijing 102206, China
2 Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, China
3 College of Storage & Transportation and Architectural Engineering, China University of Petroleum (Hua Dong), Qingdao,
Shandong 266555, China

Correspondence should be addressed to Jinliang Xu; xjl@ncepu.edu.cn

Received 23 January 2014; Accepted 10 February 2014; Published 16 March 2014

Academic Editor: Bo Yu

Copyright © 2014 Dongliang Sun et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

IDEAL is an efficient segregated algorithm for the fluid flow and heat transfer problems. This algorithm has now been extended
to the 3D nonorthogonal curvilinear coordinates. Highly skewed grids in the nonorthogonal curvilinear coordinates can decrease
the convergence rate and deteriorate the calculating stability. In this study, the feasibility of the IDEAL algorithm on highly skewed
grid system is analyzed by investigating the lid-driven flow in the inclined cavity. It can be concluded that the IDEAL algorithm is
more robust and more efficient than the traditional SIMPLER algorithm, especially for the highly skewed and fine grid system. For
example, at 𝜃 = 5∘ and grid number = 70 × 70 × 70, the convergence rate of the IDEAL algorithm is 6.3 times faster than that of the
SIMPLER algorithm, and the IDEAL algorithm can converge almost at any time step multiple.

1. Introduction

SIMPLE [1] is the first pressure-correction algorithm, which
was proposed by Patankar and Spalding in 1972. This algo-
rithm is still widely used until now and is one of the
most important solvers in FLUENT software. However, there
are two major approximations in the SIMPLE algorithm.
The first is that the initial pressure and velocity fields
are assumed independently, thus neglecting the coupling
between pressure and velocity.The second is that the velocity
corrections of the neighboring grids are neglected in order
to make the final pressure-correction equation manageable.
These two approximations do not affect the final converged
solutions but influence the convergence rate and robustness
of the algorithm greatly [2]. For overcoming one or both
of the approximations mentioned above, a series of algo-
rithms have been proposed since the birth of the SIMPLE
algorithm, such as SIMPLER (1981) [3], SIMPLEST (1981)
[4, 5], SIMPLEC (1984) [6], PISO (1985) [7, 8], SIMPLEX
(1985) [9, 10], FIMOSE (1985) [11], CTS SIMPLE (1986) [12],
SIMPLESSE (1993) [13], SIMPLESSEC (1997) [14], SIMPLET

(1998) [15], SOAR (2000) [16], MSIMPLER (2001) [17], and
CSIMPLER (2005) [18]. The common characteristic of the
above-mentioned algorithms is that a pressure-correction
term is introduced to improve the velocity and pressure,
leading to the neglect of the velocity corrections of the
neighboring grids. Hence the second approximation is not
overcome and these algorithms are only semi-implicit.

In 2004, Tao et al. [19, 20] proposed a novel CLEAR
algorithm. Different from other algorithms, the algorithm
improves the velocity and pressure by solving a pressure
equation directly, avoiding the introduction of a pressure-
correction term and a velocity-correction term. Thus the
second approximation of the SIMPLE algorithm is overcome,
making the algorithm fully implicit. However, the robustness
of the CLEAR algorithm is somewhat weakened by directly
solving the pressure equation. Therefore, further improve-
ment should be made to develop a more efficient and robust
algorithm.

To overcome the disadvantage of the CLEAR algorithm,
the present authors proposed an IDEAL algorithm [21, 22] in
2008. In the IDEAL algorithm, there exist two inner iteration
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Figure 1: 3D nonorthogonal curvilinear coordinate system.

processes for pressure field solution at each iteration level.
The first inner iteration process for pressure equation can
almost completely overcome the first approximation of the
SIMPLE algorithm. The second inner iteration process can
almost completely overcome the second approximation of
the SIMPLE algorithm. Thus the coupling between velocity
and pressure is fully guaranteed, greatly enhancing the
convergence rate and stability of the solution process. The
IDEAL algorithm has now been extended to the orthogonal
coordinates [23–25] and the nonorthogonal curvilinear coor-
dinates [26].

The quality of the grid plays a significant role in the
convergence rate and stability of the solution process. Highly
skewed grids in the nonorthogonal curvilinear coordinates
can decrease the convergence rate and deteriorate the cal-
culating stability. The skewness is defined as the difference
between the shape of the grid and the shape of an equiv-
alent orthogonal grid. For example, optimal grids, that is,
nonskewed grids, will have vertex angles close to 90 degrees.
In this study, the feasibility of the IDEAL algorithm for the
flow on highly skewed grids is investigated. The typical flow
problem is the lid-driven flow, which has served over and
over again in CFD/NHT as a classical problem for testing
the developed algorithms. Despite its simple geometry, the
lid-driven flow retains a rich fluid flow structure manifested
bymultiple counter-rotating recirculating regions on the cor-
ners. Due to the flow complexity and convergence difficulty,
the lid-driven flow in the inclined cavity is adopted to analyze
the solving performance of the IDEAL algorithm on highly
skewed grid system.

In the following presentation, the governing equations
are firstly introduced in Section 2. The solution procedure of
the IDEAL algorithm in the 3D nonorthogonal curvilinear
coordinates is briefly reviewed in Section 3. The effect of the
grid skewness on the solving performance of the IDEAL
algorithm is analyzed in Section 4. The conclusions are
summarized in the end of the paper.

2. Governing Equations

The incompressible laminar flow is considered in this study.
Figure 1 shows a 3D nonorthogonal curvilinear coordinate
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Figure 2: Schematic diagram of the 3D inclined cavity.

system (𝜉, 𝜂, 𝜁). The corresponding governing equations in
this coordinate system are written as the follows.

Continuity equation:
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(2)

In (1)-(2), 𝑈, 𝑉, and𝑊 are contravariant velocities and can
be expressed as

𝑈 = 𝜒
1
𝑢 + 𝜒
2
V + 𝜒
3
𝑤,

𝑉 = 𝛽
1
𝑢 + 𝛽
2
V + 𝛽
3
𝑤,

𝑊 = 𝛾
1
𝑢 + 𝛾
2
V + 𝛾
3
𝑤.

(3)
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Figure 3: Body-fitted grid systems for the 3D inclined cavity.
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Figure 4: Comparison of 𝑢 velocity profiles along the central line
“CL” at 𝜃 = 5∘ and Re = 500.

The governing equations (1)-(2) are discretized on the
body-fitted collocated grid system with the finite volume
method (FVM) [27].
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where 𝛼
𝑢
, 𝛼V, and 𝛼𝑤 are the velocity underrelaxation factors.

The SGSD scheme [28] is adopted for the convection terms
in the momentum equations. Based on the nodal veloc-
ities, the interfacial contravariant velocities are calculated
by the modified momentum interpolation method (MMIM)
[29]
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Figure 5: Comparison of outer iteration number between IDEAL and SIMPLER for different inclination angles (Re = 500, grid number =
50 × 50 × 50).

3. Brief Review of IDEAL in 3D
Nonorthogonal Curvilinear Coordinates

Based on the body-fitted collocated grid system in the 3D
nonorthogonal curvilinear coordinates, the major points of
the IDEAL algorithm are reviewed in the following.

Step 1. Assume initial nodal velocities and initial interfacial
contravariant velocities.

Step 2. Calculate the coefficients and source terms of the
discretized momentum equations (5) by the initial velocity
field.

The First Inner Iteration Process for Pressure Question

Step 3. Calculate the interfacial pseudocontravariant veloci-
ties �̃�0
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Equation (7) is obtained by substituting (6) into the dis-
cretized continuity equation (4).

Step 5. Calculate the temporary nodal velocities 𝑢Temp
𝑃

, VTemp
𝑃

,
and𝑤Temp

𝑃

from the explicit discretizedmomentum equations
by the temporary pressure 𝑝Temp. Then one inner iteration
step is finished and the next inner iteration step will be
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Repeat such iteration process composed of Steps 3, 4, and 5
until the iteration times are equal to the prespecified times
𝑁1. After the first inner iteration process is finished, the final
temporary pressure 𝑝Temp is regarded as the initial pressure
𝑝
∗.

Step 7. Solve the discretized momentum equations (5) by
the initial velocity and pressure, and obtain the intermediate
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The Second Inner Iteration Process for Pressure Question
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Figure 6: Times of outer iteration number of SIMPLER over that of
IDEAL for different inclination angles (Re = 500, grid number = 50
× 50 × 50).

Step 10. Calculate the temporary nodal velocities 𝑢Temp
𝑃

,
VTemp
𝑃

, and 𝑤Temp
𝑃

from the explicit discretized momentum
equations by the temporary pressure 𝑝Temp. Then one inner
iteration step is finished and the next inner iteration step will
be started.

Step 11. Regard 𝑢Temp
𝑃

, VTemp
𝑃

, 𝑤Temp
𝑃

, and 𝑝Temp as 𝑢𝑃Temp
𝑃

,
V𝑃Temp
𝑃

, 𝑤𝑃Temp
𝑃

, and 𝑝𝑃Temp. Return to Step 8, and all the
superscripts “∗” in Steps 8 and 9 are replaced by “𝑃Temp.”
Repeat such iteration process composed of Steps 8, 9, and 10
until the iteration times are equal to the prespecified times
𝑁2. After the second inner iteration process is finished, the
final temporary velocities are regarded as the final velocities.

Step 12. Regard the final velocities as the initial velocities of
the next iteration level; then return to Step 2. Repeat such
iterative procedure until convergence is reached.

In the IDEAL algorithm the first inner iteration times𝑁1
and the second inner iteration times𝑁2 (hereafter𝑁1&𝑁2)
can be adjusted to control the convergence rate and stability
of the solution process.𝑁1&𝑁2 is set as 12 & 12 to make the
later simulation.

4. Numerical Analyses of IDEAL on Highly
Skewed Grid System

4.1. Definition of Time Step Multiple. In the following, the
underrelaxation factors are set to be the same for the three
velocity components, that is, 𝛼

𝑢
= 𝛼V = 𝛼

𝑤
= 𝛼. For

the convenience of presentation, the time step multiple 𝐸 is
defined, which relates to the underrelaxation factor 𝛼 by the
following equation:

𝐸 =
𝛼

1 − 𝛼
(0 < 𝛼 < 1) . (9)
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(a) 𝜃 = 90∘
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(b) 𝜃 = 45∘
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(c) 𝜃 = 5∘

Figure 7: Comparison of computation time between IDEAL and SIMPLER for different inclination angles (Re = 500, grid number = 50 × 50
× 50).

Some correspondence between 𝛼 and 𝐸 is presented in
Table 1. It can be seen that, with the time step multiple, we
have a much wider range to show the performance of the
algorithm in the high-value region of the underrelaxation
factor.

4.2. Flow Configuration and Grid System of Lid-Driven Flow
in 3D Inclined Cavity. In order to verify the feasibility of
the IDEAL algorithm on highly skewed grid system, the lid-
driven flow in the inclined cavity is calculated and analyzed.
Its flow configuration is shown in Figure 2, where 𝜃 is the
inclination angle and the length of each edge is equal to 1.

A transfinite interpolation method [30] is used to gener-
ate the body-fitted grid system for the inclined cavity. Figure 3
shows the generated grids for three different inclination
angles. The grid skewness increases with the decrease of 𝜃.
As shown in this figure, the grids are skewed extremely high
at 𝜃 = 5∘.

The location of central line “CL” is shown in Figure 2. In
Figure 4, the 𝑢 velocity profiles along the central line “CL” are
presented at 𝜃 = 5∘ andRe = 500, where the Reynolds number
is defined as

Re =
𝑢lid𝐻

]
. (10)
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Figure 9: Comparison of the robustness between IDEAL and
SIMPLER for different inclination angles (Re = 500, grid number
= 50 × 50 × 50).

The results calculated by three different grid numbers
are in excellent agreement with each other, proving that the
IDEAL algorithm can obtain the grid-independent results.
And the results calculated by the IDEAL algorithm agree
very well with those calculated by the SIMPLER algo-
rithm. These comparisons give some support to the relia-
bility of the proposed IDEAL algorithm and the developed
code.

4.3. Performance Analyses of IDEAL for Different Inclination
Angles. Three different inclination angles (𝜃 = 90∘, 45∘, 5∘)

Table 1: Some correspondence between 𝛼 and 𝐸.

𝛼 𝐸

0.500 1
0.667 2
0.750 3
0.800 4
0.857 6
0.900 9
0.938 15
0.952 20
0.968 30
0.980 50
0.988 80
0.990 100

are adopted to compare the solving performance between
IDEAL and SIMPLER. Figure 5 shows the outer iteration
numbers of IDEAL and SIMPLER for the three different incli-
nation angles. And the minimum outer iteration numbers
of IDEAL and SIMPLER are marked on this figure. Figure 6
shows the times of the minimum outer iteration number of
SIMPLER over that of IDEAL,𝑇

𝑛
, for the three different incli-

nation angles. As shown in this figure, 𝑇
𝑛
increases with the

decrease of the inclination angle. At 𝜃 = 5∘, SIMPLER needs
3047 iterations to obtain the converged solution; however,
IDEAL just needs 207 iterations.The value of𝑇

𝑛
reaches up to

14.7.
Figure 7 shows the computation time of IDEAL and

SIMPLER for the three different inclination angles. And
the shortest computation times of IDEAL and SIMPLER
are marked on this figure. Figure 8 shows the times of
the shortest computation time of SIMPLER over that of
IDEAL, 𝑇

𝑡
, for three different inclination angles. 𝑇

𝑡
is less

than 𝑇
𝑛
. The reason is that the computation time of IDEAL

used on each outer iteration level is longer than that of
SIMPLER. When the grid is orthogonal, that is, 𝜃 = 90

∘,
the shortest computation times of SIMPLER and IDEAL are,
respectively, 122 s and 100 s; 𝑇

𝑡
= 1.22. The performance of

IDEAL has a little improvement. When the grid is seriously
skew, that is, 𝜃 = 5

∘, the shortest computation time of
SIMPLER reaches up to 2817 s; however, IDEAL just needs
520 s; 𝑇

𝑡
= 5.4. The convergence rate of IDEAL is enhanced

greatly.
Figure 9 compares the robustness between IDEAL and

SIMPLER for three different inclination angles. Here, 𝐸max
denotes the maximum time step multiple that an algorithm
can reach on the premise of obtaining the converged solution.
The larger the value of 𝐸max is, the more robust the algorithm
is. For the SIMPLER algorithm, the robustness is weakened
with the decrease of the inclination angle, due to the increase
of the grid skewness. For the IDEAL algorithm, the incli-
nation angle changes have no influence on the robustness.
The value of 𝐸max reaches up to 100. This means that it can
converge almost at any time step multiple even in the case of
𝜃 = 5
∘.
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(a) Grid number = 30 × 30 × 30
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(b) Grid number = 50 × 50 × 50
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(c) Grid number = 70 × 70 × 70

Figure 10: Comparison of computation time between IDEAL and SIMPLER for different grid numbers (Re = 500, 𝜃 = 5∘).

4.4. Performance Analyses of IDEAL for Different Grid Num-
bers. Three different grid systems of 30 × 30 × 30, 50 ×
50 × 50, and 70 × 70 × 70 are considered at 𝜃 = 5

∘. All
of the grids are skewed extremely highly. Figure 10 shows
the computation time and marks the shortest computation
time of IDEAL and SIMPLER for the three different grid
numbers. The corresponding 𝑇

𝑡
is shown in Figure 11. 𝑇

𝑡
is

greater than 1 and increases with the increase of the grid
number. At grid number = 70 × 70 × 70, SIMPLER needs
14783 s to obtain the converged solution; however, IDEAL just
needs 2330 s. The value of 𝑇

𝑡
reaches up to 6.3. Therefore, the

IDEAL algorithm can significantly enhance the convergence
rate compared with the SIMPLER algorithm, especially for
the fine-grid flow case. Figure 12 compares the robustness

between IDEAL and SIMPLER. The IDEAL algorithm can
converge almost at any time step multiple (𝐸 ≤ 𝐸max = 100)
for the three different grid numbers. Its robustness is much
better than that of the SIMPLER algorithm.

5. Conclusions

In this paper, the lid-driven flow in the inclined cavity has
been adopted to compare the solving performance between
IDEAL and SIMPLER. The following conclusions can be
obtained.

(1) The IDEAL algorithm is more efficient than the
SIMPLER algorithm for different inclination angles
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Figure 12: Comparison of the robustness between IDEAL and
SIMPLER for different grid numbers (Re = 500, 𝜃 = 5∘).

and different grid numbers, especially for the highly
skewed and fine grid system. For example, at 𝜃 = 5∘
and grid number = 70× 70× 70, the convergence rate
of the IDEAL algorithm is 6.3 times faster than that of
the SIMPLER algorithm.

(2) The IDEAL algorithm is more robust than the SIM-
PLER algorithm for different inclination angles and
different grid numbers. The IDEAL algorithm can
converge almost at any time stepmultiple (𝐸 ≤ 𝐸max =
100) even in the case of 𝜃 = 5

∘ and grid number
= 70 × 70 × 70.

Due to the superiority of the IDEAL algorithm, it is
expected that the proposed algorithm will be widely used in
the future.

Nomenclature

𝑎: Coefficient in the discretized equation
𝑏: Constant term in the discretized

equation
𝐸: Time step multiple
𝐸max: Maximum time step multiple that an

algorithm can reach
𝑝: Pressure, Pa
Re: Reynolds number
𝑆


𝑢

, 𝑆V, 𝑆


𝑤

: Source term introduced by the grid
nonorthogonality

𝑇
𝑛
: Times of the minimum outer iteration

number of SIMPLER over that of
IDEAL

𝑇
𝑡
: Times of the shortest computation time

of SIMPLER over that of IDEAL
𝑢,V, 𝑤: Velocity components in 𝑥,𝑦,and 𝑧

directions, m⋅s−1
𝑈,𝑉,𝑊: Contravariant velocity components in 𝜉,

𝜂, and 𝜁 directions, m⋅s−1

�̃�,�̃�,�̃�: Pseudocontravariant velocities, m⋅s−1
𝛼: Underrelaxation factor
𝜂: Dynamic viscosity, Pa⋅s
]: Kinematic viscosity, m2⋅s−1
𝜃: Inclination angle, ∘
𝜌: Density, kg⋅m−3
𝜉,𝜂, 𝜁: Nonorthogonal curvilinear coordinates.

Subscript

𝑒,𝑤,𝑛,𝑠,𝑡,𝑏: Grid interface
𝑛𝑏: Neighboring grid points
𝑃,𝐸,𝑁,𝑆,𝑊,𝑇,𝐵: Grid point
𝑢,V,𝑤: Referring to 𝑢,V,and 𝑤

momentum equations.

Superscript

𝑝: Referring to pressure equation
𝑃Temp: Temporary value in previous inner iteration step
Temp: Temporary value in current inner iteration step
𝑢,V, 𝑤: Referring to 𝑢,V,and 𝑤momentum equations
0: Previous iteration
∗: Intermediate value in iteration.
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