
International Communications in Heat and Mass Transfer 63 (2015) 23–34

Contents lists available at ScienceDirect

International Communications in Heat and Mass Transfer

j ourna l homepage: www.e lsev ie r .com/ locate / ichmt
Thermal performance of continuouslymoving radiative–convective fin of
complex cross-section with multiple nonlinearities☆
Ya-Song Sun a, Jin-Liang Xu b,⁎
a Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy, North China Electric Power University, Beijing 102206, China
b State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
☆ Communicated by W.J. Minkowycz.
⁎ Corresponding author.

E-mail address: xjl@ncepu.edu.cn (J.-L. Xu).

http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.01.01
0735-1933/© 2015 Elsevier Ltd. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Available online 4 March 2015
Keywords:
Thermal performance of moving fin
Coupled radiation and convection
Complex cross-section
Variable thermal conductivity
Variable surface emissivity
Power law heat transfer coefficient
Spectral collocation method (SCM) is adopted to predict the temperature distribution in the fin with temperature
dependent thermal conductivity, heat transfer coefficient and surface emissivity. These temperature dependent
properties or parameters cause multiple nonlinearities of energy equation. In order to reduce these multiple non-
linearities, a local linearization approach is adopted. The spatial distribution of dimensionless temperature is
discretized by Lagrange interpolation polynomials. Accordingly, the differential form of energy equation is trans-
formed to the matrix form of algebraic equation. The accuracy of the SCMmodel is verified by comparing SCM re-
sults with available data in references. Meanwhile, compared with analytical solutions, it can be found that the
convergence rate of SCMapproximately follows exponential law. In addition, effects of various physical parameters,
such as Peclet number, thermal conductivity parameter, emissivity parameter, parameter of heat transfer coeffi-
cient, convective–conductive parameter and radiative–conductive parameter on the dimensionless temperature,
the dimensionless fin-tip temperature and the volume adjusted fin efficiency are comprehensively analyzed.
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1 . Introduction

Fined surfaces are generally used as a heat dissipation mechanism
to enhance heat transfer rate between primary surface and the environ-
ment in heat exchangers [1,2]. They have widely applications in
engineering industries, such as low-temperature flue gas utilization sys-
tems of waste heat energy, heat exchangers in power plants, heat ex-
changer of heat pump, etc. Most thermal performance analyses in the
fin are based on the assumptions of uniform temperature distribution
along the fin cross-section and constant thermo-physical properties.
These assumptions can simplify energy equation from partial difference
equation to ordinary difference equation, and the analytical solution of
energy equation can be obtained. However, these assumptions are
inconsistent with the thermal performances in the fin under realistic
operation conditions which invariably involve multiple nonlinearities.
Because of these multiple nonlinearities, it is impossible to obtain the
analytical solution of energy equation. Therefore, many researchers try
to solve energy equation by approximation or numerical methods.

One of nonlinearities arises when thermal conductivity is varied
with temperature. If a large temperature variation exists in the
fin, thermal conductivity of the fin may be varied with temperature
[3]. For instance, thermal conductivity of aluminum fin decreases
from 302 W ⋅ m−1 ⋅ K−1 at 100 K to 218 W ⋅ m−1 ⋅ K−1 at 800 K;
1

thermal conductivity of AISI 302 stainless steel fin increases from
17.3 W ⋅ m−1 ⋅ K−1 at 400 K to 25.5 W ⋅ m−1 ⋅ K−1 at 1000 K [3]. As
early as in themiddle of 1980s, Aziz and Huq [4] gave rigorous formula-
tions by a perturbation method, and established the optimum fin
parameter on temperature dependent thermal conductivity. Coskun
and Atay [5] developed the variation iteration method to analyze the
fin efficiency of straight convective fins with temperature dependent
thermal conductivity. Kulkarni and Joglekar [6] proposed a numerical
technique based on residueminimization to solve the nonlinear energy
equation in straight convectivefinswith temperature dependent thermal
conductivity. Domairry and Fazeli [7] utilized homotopy analysismethod
(HAM) to evaluate the fin efficiency in the straight finwith variable ther-
mal conductivity.

Another nonlinearity appears when heat transfer coefficient is a
function of temperature. In real applications, the dependence of heat
transfer coefficient is usually expressed as a power law form where its
power depends on heat transfer mode like laminar natural convection,
turbulent natural convection, condensation and boiling. This phenome-
non had been confirmed by experimental results of Sertkaya et al. [8].
Lesnic et al. [9] presented a decomposition solution in terms of the
ordinary functions of heat transfer for a straight fin. In this work, heat
transfer coefficient is varied as a power–law function of the temperature
difference between the surface and the convective sink. Sadri et al. [10]
considered a constant cross-section area with temperature dependent
thermal conductivity and heat transfer coefficient, and used differential
transformation method (DTM) to obtain approximated analytical solu-
tions for the temperature distribution and the fin efficiency. Kahani
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Nomenclature

A thermal conductivity parameter
B emissivity parameter
bj coefficient of the integral term weight
C Fin taper ratio
C1, C2 constants in Eq. (36)
cp specific heat capacity at constant pressure, J ⋅ kg−1 ⋅ K−1

Di, j
(1) entries of the first order derivative matrix

Di, j
(2) entries of the second order derivative matrix

Fi, j entries of spectral coefficient matrix which are defined
in Eq. (23)

Gi, j entries of spectral coefficient matrix which are defined
in Eq. (28)

Hi entries of spectral coefficient matrix which are defined
in Eq. (24)

h convective heat transfer coefficient, W ⋅ m−2 ⋅ K−1

hi barycentric Lagrange interpolation polynomials
hL convective heat transfer coefficient corresponding to

the temperature difference TL − Tc, W ⋅ m−2 ⋅ K−1

L fin tip length, m
l1, l2 adjustment parameters to reduce the nonlinearity of

energy equation
m parameter of variable heat transfer coefficient
N total number of collocation points
Ncc convective–conductive parameter
Nrc radiative–conductive parameter
P perimeter, m
Pe Peclet number
Qi entries of spectral coefficient matrix which are defined

in Eq. (29)
qf fin heat transfer rate, W ⋅ m−1

qf⁎ volume adjusted heat transfer rate, W ⋅ m−1

qideal ideal heat transfer rate, W ⋅ m−1

Rvolume volume ratio
si Chebyshev–Gauss–Lobatto collocation points
T temperature, K
Tc ambient fluid temperature, K
TL temperature at fin base, K
Ts radiation sink temperature, K
wi entries of integral matrix defined in Eq. (31)
wj′ coefficient of Lagrange interpolation polynomials
X dimensionless axial coordinate
x coordinate in x-direction, m

Greek symbols
α thermal conductivity coefficient K−1

β surface emissivity coefficient, K−1

δ semi-thickness of the fin, m
δ0 semi-fin taper thickness, m
δj′ parameter defined in Eq. (21)
δL semi-base thickness, m
ε surface emissivity
εerror integral averaged relative error
εs surface emissivity at radiation sink temperature
η fin efficiency
η⁎ volume adjustment fin efficiency
Θ dimensionless temperature
Θ⁎ the last iterative value of dimensionless temperature
Θc dimensionless environment temperature
Θs dimensionless radiation sink temperature
λ thermal conductivity, W ⋅ m−1 ⋅ K−1

λ0 thermal conductivity at convection sink temperature,
W ⋅ m−1 ⋅ K−1

ρ density of the fin material, kg ⋅ m−3

σ Stefan–Boltzmann constant, W ⋅ m−2 ⋅ K−4

Subscripts
i, j,k solution node indexes
max maximum value
min minimum value
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et al. [11] utilized HAM to evaluate the analytical approximate solution
and the fin efficiency of the nonlinear fin problem with variable thermal
conductivity and heat transfer coefficient. Mosayebidorcheh et al. [12]
used DTM to solve the nonlinear heat transfer equation of the fin when
both thermal conductivity and heat transfer coefficient are power–law
temperature dependent. Kani and Aziz [13] developed HAM for evaluat-
ing the thermal performance of a straight trapezoidal fin with tempera-
ture dependent thermal conductivity and heat transfer coefficient.

The other nonlinearities arise in the energy conservation equation of
the fin due to the Stefan–Boltzmann law for radiation and temperature
dependent internal heat generation [14]. Torabi and Aziz [15] devel-
oped DTM to analyze the thermal performance and the fin efficiency
of T-shape cross-section with temperature dependent thermal conduc-
tivity, heat transfer coefficient and surface emissivity. Torabi and Zhang
[16] analytically investigated the temperature distribution and efficien-
cy of convective–radiative straight fins of various cross-sectionswith si-
multaneous variation of thermal conductivity, heat transfer coefficient,
surface emissivity and internal heat generation. Recently, Torabi et al.
[17] comparatively studied convective–radiative fins of rectangular,
trapezoidal and concave parabolic profiles with simultaneous variation
of thermal conductivity, heat transfer coefficient and surface emissivity
depending on temperature.

Spectral collocation method (SCM) is a high order numerical method
which is based on Chebyshev polynomials [18]. In the field of numerical
simulations, lower order methods, like finite volume method and finite
elementmethod, canprovide linear convergence rate,while SCMcanpro-
vide exponential convergence rate [19,20]. Due to themathematical sim-
plicity and high accuracywith relatively few spatial grid points necessary,
SCM is considered to be an efficient technique in science and engineering
applications, such as computational fluid dynamics [21–23], electromag-
netics [24], and magneto-hydrodynamics [25–27]. Recently, Li et al. suc-
cessfully developed SCM to analyze thermal radiation heat transfer [28]
and coupled radiation and conduction heat transfer [29] in the semitrans-
parent medium.

In this research, we extend SCM to solve the radiative–convective
heat transfer in the moving fin of complex cross-section with variable
thermal conductivity, heat transfer coefficient, and surface emissivity.
In the following, the physical model and mathematical formulations
will be presented in Section 2. The accuracy and convergence rate of
the SCM are demonstrated by available numerical results in the litera-
ture and analytical solutions in Section 3. In addition, effects of various
parameters, including Peclet number Pe, thermal conductivity parame-
ter A, emissivity parameter B, parameter of heat transfer coefficient m,
convective–conductive parameter Ncc, and radiative–conductive pa-
rameter Nrc, on the dimensionless temperature distribution, the dimen-
sionless fin-tip temperature and the fin efficiency in the moving fin of
complex cross-section are also analyzed in Section 3. Finally, conclu-
sions are summarized in Section 4.

2 . Physical model and mathematic formulations

2.1. Physical and mathematical models

As shown in Fig. 1, we consider the thermal processing of continu-
ously moving fins of trapezoidal, concave parabolic and convex cross-
sections with perimeter P and constant speed U. Surfaces of these



Fig. 1.Moving radiative–convective fins of different cross sections. (a) trapezoidal cross-section, (b) concave parabolic cross-section, (c) convex cross-section.
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longitudinal fins transfer energy by both convection and radiation. A
sink temperature Tc b TL is assumed for convective heat transfer, and
other sink temperature Ts b TL is considered for radiative heat transfer.
The fin tip is assumed to be adiabatic and the temperature is TL. The ra-
diative heat exchange between the fin and the base is neglected. If a
large temperature variation exists within the fins, the thermal conduc-
tivity and the convective heat transfer coefficient of the finsmay be var-
ied with temperature, and can be taken as [10,11]

λ ¼ λ0 1þ α T−Tcð Þ½ � ð1Þ

h ¼ hL
T−Tc

TL−Tc

� �m

ð2Þ

where λ0 is the thermal conductivity at the convective sink temperature
Tc, and α is the thermal conductivity coefficient which is determined by
the fin material. For example, the thermal conductivity coefficient of
aluminum is α = −3.9375 × 10−4K−1 when the fin temperature
decreases from 800 K to 100 K [3]. hL is the convection heat transfer
coefficient corresponding to the temperature difference TL − Tc; m
is the parameter for variable heat transfer coefficient. For instance,
m=−1/4,m=1/4 andm=1/3 for laminar film boiling or condensa-
tion, laminar natural convection, and turbulent natural convection,
respectively [12].

Moreover, the surface emissivity is assumed to be the function of
temperature [15]

ε ¼ εs 1þ β T−Tsð Þ½ � ð3Þ

where εs is the surface emissivity at the radiation sink temperature Ts,
and β is the surface emissivity coefficient.



Table 1
The local semi-fin thickness for fin of variable cross-section.

Variable cross section The local semi-fin thickness

Trapezoidal cross section δ(x) = δ0[(x/L) − 1] + δL
Concave parabolic cross section δ(x) = δ0[(x/L)2 − 1] + δL
Convex cross section δ(x) = δ0(x/L)1/2 + (δL − δ0)
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From the view of energy conservation, the steady-stated energy
equation of longitudinal fin element can be expressed as

d
dx

λ Tð Þδ xð Þ dT
dx

� �
−h Tð Þ T−Tcð Þ−ε Tð Þσ T4−T4

s

� �
þ ρcpδ xð ÞU dT

dx
¼ 0 ð4Þ

where δ(x) is the local semi-fin thicknesswithin the fin element, and its
detailed expression is listed in Table 1. In Table 1, δL is the semi-base
thickness; and δ0 is the semi-fin taper thickness (see Fig. 1).

There are different types of boundary conditions for the radiative–
convective moving fin, such as prescribed temperature (Dirichlet
boundary condition), and prescribed heat flux (Neumann boundary
condition). In the fin base boundary, the boundary condition for
Eq. (4) is assumed to constant temperature

T x ¼ Lð Þ ¼ TL: ð5Þ

In the fin tip boundary, the boundary condition for Eq. (4) is as-
sumed to adiabatic boundary

dT
dx

����
x¼0

¼ 0: ð6Þ

For convenience of analysis, the energy equation and the corre-
sponding conditions are non-dimensionalized

d
dX

1þ A Θ−Θcð Þ½ � δ Xð Þ
δL

dΘ
dX

	 

−Ncc Θ−Θcð Þmþ1

−Nrc 1þ B Θ−Θsð Þ½ � Θ4−Θ4
s

� �
þ Pe

δ Xð Þ
δL

dΘ
dX

¼ 0
ð7Þ

Θ X ¼ 1ð Þ ¼ 1 ð8Þ

dΘ
dX

����
X¼0

¼ 0 ð9Þ

where dimensionless parameters are listed in Table 2.
Table 2
Dimensionless parameters for heat transfer in the moving radiative–convective fin.

Dimensionless parameters Definition

Dimensionless temperature Θ ¼ T
TL

Dimensionless convective sink temperature Θc ¼ Tc
TL

Dimensionless radiative sink temperature Θs ¼ Ts
TL

Dimensionless axial coordinate X ¼ x
L

Convective–conductive parameter Ncc ¼ hLL
2Tm

L
λ0δL TL−Tcð Þm ;

Radiative–conductive parameter Nrc ¼ σεs L2T3
L

λ0δL

Thermal conductivity parameter A = αTL
Emissivity parameter B = βTL
Fin taper ratio C ¼ δ0

δL

Peclet number Pe ¼ LUρcp
λ0
Eq. (7) has multiple nonlinearities due to temperature dependent
thermal conductivity, heat transfer coefficient and surface emissivity.
To reduce these nonlinearities, Eq. (7) can be rewritten as

1þ A Θ−Θcð Þ½ � δ Xð Þ
δL

d2Θ
dX2 þ 1þ A Θ−Θcð Þ½ � 1

δL

dδ Xð Þ
dX

� �
dΘ
dX

þPe
δ Xð Þ
δL

dΘ
dX

þ l1NccΘ
mþ1 þ l2Nrc 1þ B Θ−Θsð Þ½ �Θ4

¼ Ncc Θ−Θcð Þmþ1 þ Nrc 1þ B Θ−Θsð Þ½ � Θ4−Θ4
s

� �
−A

δ Xð Þ
δL

dΘ
dX

� �2
þ l1NccΘ

mþ1 þ l2Nrc 1þ B Θ−Θsð Þ½ �Θ4

ð10Þ

where l1 and l2 are adjustment parameters, and these values of l1 and l2
are subjected to convection–conduction parameter and radiation–con-
duction parameter.

The fin heat transfer rate qf can be computed by integrating the con-
vective and radiative heat losses from the surface of the fin as follows

qf ¼
Z L

0
hLP xð Þ T−Tcð Þmþ1

TL−Tcð Þm þ P xð Þσεs 1þ β T−Tsð Þ½ � T4−T4
s

� �( )
dx:

ð11Þ

The ideal fin heat transfer rate qideal is realized if the entire fin is
maintained at the base temperature, and may be found as

qideal ¼
Z L

0
LP xð ÞhL

Tb−Tcð Þmþ1

TL−Tcð Þm þ LP xð Þσεs 1þ β T−Tsð Þ½ � T4−T4
s

� �( )
dx:

ð12Þ

The fin efficiency η is defined as the ratio of the fin heat transfer rate
qf and the ideal fin heat transfer rate qideal as follows [15]

η ¼ qf

qideal
¼

Z 1

0
Ncc Θ−Θcð Þmþ1 þ Nrc 1þ B Θ−Θsð Þ½ � Θ4−Θ4

s

� �h i
dX

Ncc 1−Θcð Þmþ1 þ Nrc 1þ B 1−Θsð Þ½ � 1−Θ4
s

� � : ð13Þ

However, for the comparison of the fin efficiency for trapezoidal and
concave parabolic cross-sections, the difference in the amount of mate-
rial for these fins should be taken into account. The ratio of volume
Rvolume for different cross-sections can be computed as

Rvolume ¼
Vt or Vc

Vr
¼

Z L

0
δL þ δ0 x=Lð Þn−1

 �� �
dx

LδL

¼
Z 1

0
1þ C Xn−1

� � �
dX ¼ 1− Cn

nþ 1
:

ð14Þ

Hence, the volume adjusted heat transfer rate qf⁎ can be obtained
by the fin heat transfer rate qf to divide the volume ratio Rvolume. The
volume adjusted fin efficiency is expressed as

η� ¼ q�f
qideal

¼ qf

Rvolumeqideal
¼ η

Rvolume
: ð15Þ

2.2. Spectral collocation method formulation

For the dimensionless energy equation, the non-periodic spatial do-
main is discretized by the Chebyshev–Gauss–Lobatto (CGL) collocation
points [20]

si ¼ − cos
π i−1ð Þ
N−1

� �
; i ¼ 1;2; ⋯;N ð16Þ

where N is the total number of collocation points.
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In order to fit the requirement of Chebyshev polynomials, the
following transformation should be used to map arbitrary interval
[Xmin, Xmax] into standard interval [−1,1]

X ¼ 1
2

Xmax−Xminð Þsþ Xmax þ Xminð Þð Þ½ �: ð17Þ

After mapping, Eq. (10) can be written as

1þ A Θ−Θcð Þ½ � δ sð Þ
δL

Xmax−Xmin

2

� �2 d2Θ
ds2

þ 1þ A Θ−Θcð Þ½ � 1
δL

dδ sð Þ
ds

� �
Xmax−Xmin

2

� �2 dΘ
ds

þPe
δ sð Þ
δL

Xmax−Xmin

2

� �
dΘ
ds

þ l1NccΘ
mþ1 þ l2Nrc 1þ B Θ−Θsð Þ½ �Θ4

¼ Ncc Θ−Θcð Þmþ1 þ Nrc 1þ B Θ−Θsð Þ½ � Θ4−Θ4
s

� �
−A

δ sð Þ
δL

Xmax−Xmin

2

� �2 dΘ
ds

� �2
þ l1NccΘ

mþ1 þ l2Nrc 1þ B Θ−Θsð Þ½ �Θ4
:

ð18Þ

The dimensionless temperature can be approximated by Lagrange
interpolation polynomials, like

Θ sð Þ≈
XN
i¼1

Θ sið Þhi sð Þ ð19Þ

where hi(s) are functions of the barycentric Lagrange interpolation
polynomials [19]

hi sð Þ ¼ w0
i= s−sið ÞXN

j¼1

w0
j= s−s j
� � ð20Þ

where

w0
j ¼ −1ð Þ j−1δ0j; δ0j ¼ 1=2; j ¼ 1;N

1; otherwise

	
: ð21Þ

Substituting the approximation of dimensionless temperature
(Eq. (19)) into the dimensionless energy equation (Eq. (18)), one can
obtain the matrix form of spectral discretized algebraic equation

F1;1 F1;2 ⋯ F1;N
F2;1 F2;2 ⋯ F2;N
⋮ ⋮ ⋱ ⋮

FN;1 FN;2 ⋯ FN;N

2
664

3
775

Θ1
Θ2

⋮
ΘN

2
664

3
775 ¼

H1
H2

⋮
HN

2
664

3
775 ð22Þ

where the elements of matrices Fi, j and Hi are defined as

Fi; j ¼

1þ A Θ�
i −Θc

� � � Xmax−Xmin

2

� �2 δi
δL

D 2ð Þ
i; j

þ 1þ A Θ�
i −Θc

� � � Xmax−Xmin

2

� �2 XN
k¼1

D 1ð Þ
i;k δk

 !
D 1ð Þ
i; j

þPe
Xmax−Xmin

2

� �
δi
δL

D 1ð Þ
i; j þ l1Ncc Θ�

i

� �m
þl2Nrc 1þ B Θ�

i −Θs

� � �
Θ�

i

� �3
i ¼ j

1þ A Θ�
i −Θc

� � � Xmax−Xmin

2

� �2 δi
δL

D 2ð Þ
i; j

þ 1þ A Θ�
i −Θc

� � � Xmax−Xmin

2

� �2 XN
k¼1

D 1ð Þ
i;k δk

 !
D 1ð Þ
i; j

þPe
Xmax−Xmin

2

� �
δi
δL

D 1ð Þ
i; j

i≠ j

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð23Þ
Hi ¼ Ncc Θ�
i −Θc

� �mþ1 þ Nrc 1þ B Θ�
i −Θs

� � �
Θ�

i

� �4−Θ4
s

h i
−A

δi
δL

Xmax−Xmin

2

� �2 XN
k¼1

D 1ð Þ
i;k Θ

�
k

 !2

þl1Ncc Θ�
i

� �mþ1 þ l2Nrc 1þ B Θ�
i−Θs

� � �
Θ�

i

� �4
ð24Þ

whereΘ⁎ denotes the last iterative value of dimensionless temperature,
Di, j

(1) and Di, j
(2) are entries of the first order and the second order deriva-

tive coefficient matrices, respectively [18].
Similarly, the spectral discretization of Neumann boundary condi-

tion (Eq. (9)) can be written as

D 1ð Þ
1;1 D 1ð Þ

1;2 ⋯ D 1ð Þ
1;N

h i Θ1
Θ2

⋮
ΘN

2
664

3
775 ¼ 0: ð25Þ

Importing Dirichlet and Neumann boundary conditions, the spectral
discretization of energy equation can be rewritten in thematrix form as
follows.

ð26Þ

Stripping the last row and column of the first matrix on the right
hand of Eq. (26), Eq. (26) can be rearranged as the following

G1;1 G1;2 ⋯ G1;N−1
G2;1 G2;2 ⋯ G2;N−1

⋮ ⋮ ⋱ ⋮
GN−1;1 GN−1;2 ⋯ GN−1;N−1

2
6664

3
7775

Θ1
Θ2

⋮
ΘN−1

2
664

3
775 ¼

Q1
Q2

⋮
QN−1

2
664

3
775 ð27Þ

where

Gi; j ¼ D 1ð Þ
1; j i ¼ 1
Fi; j i≠ 1

(
ð28Þ

Qi ¼
−D1;N i ¼ 1
Hi−Fi;N i≠ 1

	
: ð29Þ

Substituting Eq. (19) into Eq. (13), the spectral discretized form of
fin efficiency can be written as

η ¼

XN
i¼1

Ncc Θi−Θcð Þmþ1 þ Nrc 1þ B Θi−Θsð Þ½ � Θ4
i −Θ4

s

� �n oZ 1

0
hi sð Þds

Ncc 1−Θcð Þmþ1 þ Nrc 1þ B 1−Θsð Þ½ � 1−Θ4
s

� �

¼

XN
i¼1

Ncc Θi−Θcð Þmþ1 þ Nrc 1þ B Θi−Θsð Þ½ � Θ4
i −Θ4

s

� �n o
wi

Ncc 1−Θcð Þmþ1 þ Nrc 1þ B 1−Θsð Þ½ � 1−Θ4
s

� �
ð30Þ



Fig. 2. The flow chart of the implementation steps.
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where wi are entries of the integral term weight corresponding to CGL
collocation points, and their detailed expression are [20]

wi ¼
2
Nci

X
j¼odd

bjc j cos
i−1ð Þ j−1ð Þπ

N

� �
ð31Þ

in which bj ¼
0; j ¼ even
2

1− j−1ð Þ2 ; j ¼ odd

	
:

2.3. Solution procedures

As shown in Fig. 2, the implementation of SCM for solving nonlinear
heat transfer in moving radiative–convection fin of complex cross-
section can be executed through the following routine.

Step 1. Choose the number of collocation points N, compute CGL collo-
cation points si, and then compute the coordinate values Xi by
the transformation equation (Eq. (17)).
Step 2. Compute the first order derivative matrix D(1), the second order
derivative matrix D(2), and the integral matrix w.

Step 3. Give the dimensionless temperature an initial assumption Θ⁎
(zero, for example) in all nodes except for boundary.

Step 4. Assemble spectral coefficient matrices F and H by Eqs. (23) and
(24).

Step 5. Impose the boundary conditions, and compute spectral coeffi-
cient matrices G and Q by Eqs. (28) and (29).

Step 6. Directly solve the matrix Eq. (27) to get the new dimensionless
temperature Θ.

Step 7. If the convergence criteria (Eq. (32)) is satisfied, terminate the
iteration and go to step 8. Otherwise, renew the dimensionless
temperature and go back to step 4.

Step 8. Compute the fin efficiency and the adjustment fin efficiency by
Eqs. (30) and (15).

The convergence criteria of dimensionless temperature is

Z 1

0
Θ−Θ��� ��dXZ 1

0
Θ��� ��dX ≤10−6

: ð32Þ

3 . Results and discussions

Compared with FVM, FDM and FEM, the main superiorities of SCM
are exponential convergence and high accuracy [18]. In this paper, we
analyze the performance characteristics ofmoving radiative–convective
fins of trapezoidal, concave parabolic and convex cross-sections with
temperature dependent of thermal conductivity, heat transfer coeffi-
cient and surface emissivity. For convenience, Results and discussions
are divided into five sub-sections. Firstly, the SCM results are checked
against benchmark solutions which are solved by DTM. These compari-
sons are adopted in order to verify the accuracy of SCM. Secondly, the
effect of number of collocation points on dimensionless temperature is
analyzed, and the convergence characteristic of the SCM for themoving
radiative–convective fin is examined. Thirdly, some figures are illustrat-
ed about the effects of physical parameters such as Peclet number Pe,
thermal conductivity parameter A, emissivity parameter B, parameter
of heat transfer coefficient m, convective–conductive parameter Ncc,
and radiative–conductive parameter Nrc on dimensionless temperature
distributions within the moving fin. Finally, some figures are illustrated
about effects of aforementioned parameters on the dimensionless fin-
tip temperature. Fourthly, some figures are also shown about effects of
aforementioned parameters on the fin-tip temperature in the moving
fin. Finally, effects of aforementioned parameters on the fin efficiency
of the moving fin are analyzed. All computations of SCM formulations
are carried out on a computer with Inter Core I5 2.40 GHz processor
and 2.0 GB RAMmemory.

3.1. Validation of model

In order to validate above SCM formulations, we consider stationary
radiative–convective fins of trapezoidal, concave parabolic and convex
cross-sections with variable thermal conductivity, heat transfer coeffi-
cient and surface emissivity.

For the sake of quantitative comparison SCM results and available
data in the literature, the integral averaged relative error is defined as

εerror ¼

Z
RSCM xð Þ−RBenchmark xð Þj jdxZ

Rbenchmark xð Þdx
ð33Þ

where RSCM is the SCM solution, RBenchmark is the Benchmark solution.
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Fig. 3. Comparison of the SCM results with the analytical solutions for (a) trapezoidal
cross-section, (b) concave parabolic cross-section, (c) convex cross-section.
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The dimensionless temperature distributions by SCM within the
trapezoidal fin are shown in Fig. 3(a) for two different thermal conduc-
tivity parameters, namely, A=0.4 and A=−0.4. In the trapezoidal fin,
the surface emissivity is a linear function of temperature as ε(T) =
εs[1+ 0.2(Θ− Θs)], and the convective heat transfer is h= hL. Convec-
tive–conductive parameter is Ncc = 1, radiative–conductive parameter
isNrc= 1, the convective sink temperature is Θc=0.5 and the radiative
sink temperature Θs = 0.5. As shown in Fig. 3(a), the results of present
method in this paper are in good agreement with those of DTM [17] for
different thermal conductivity parameters. Compared with the results
of DTM [17], the integral averaged relative errors are 0.14% and 0.43%
at thermal conductive parameters A = 0.4 and A= −0.4, respectively.

Next, we consider a concave parabolic fin with different convective
heat transfer modes, wherem=0 andm=2 are for forced convection
and nucleate boiling, respectively. The thermal conductivity and the
surface emissivity of the concave parabolic fin vary linearly with tem-
perature and can be expressed as λ(T) = λ0[1 + 0.4(Θ − Θc)] and
ε(T) = εs[1 + 0.2(Θ − Θs)], respectively. Other physical parameters
are the same as above. The dimensionless temperature distributions of
SCM are shown in Fig. 3(b) for different parameters of heat transfer co-
efficient. There is no observable difference between the results of SCM
and DTM [17].

In order to further prove the accuracy of SCM,more comparisons be-
tween the results of SCM and those available results in Ref. [16] are
made. In Fig. 3(c), the dimensionless temperature distributions in con-
vex fin are shown for different convective–conductive parameters
with Ncc = 0.5 and Ncc = 1.0. The remaining parameters are A = 0.2,
B = 0.2, C = 1.0, Nrc = 1.0, Pe = 0.0, Θc = 0.5 and Θs = 0.5. This case
was also studied by Torabi and Zhang using the DTM [16]. As shown
in Fig. 3(c), it is seen that results of SCM match very well with those of
DTM [16]. The integral relative errors between SCM and DTM are
0.19% and 0.18% for Ncc = 0.1 and Ncc = 1.0, respectively.

3.2. Effect of the number of collocation points

In order to analyze the effect of the number of collocation points, we
consider moving radiative–convective fin of rectangular cross section
with a constant thermal conductivity (A = 0), a constant heat transfer
coefficient (m=0) and pure convection (Nrc= 0). The governing equa-
tion is reduced to

d2Θ
dX2 −Ncc Θ−Θcð Þ þ Pe

dΘ
dX

¼ 0 ð34Þ

with boundary conditions (Eqs. (8) and (9)).
Then, the analytic solution of Eq. (35) can be derived as

Θ Xð Þ ¼ C1e
− Peþ

ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2þ4Ncc

p
2 X

� �
þ C2e

− Pe−
ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2þ4Ncc

p
2 X

� �
þ Θc ð35Þ

where constants are same as follows

C1 ¼ C2 ¼
Peþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2 þ 4Ncc

q� �
Θc−1ð Þ

Pe−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2 þ 4Ncc

q� �
e
− Peþ

ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2þ4Ncc

p
2

� �
− Peþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2 þ 4Ncc

q� �
e
− Pe−

ffiffiffiffiffiffiffiffiffiffiffiffi
Pe2þ4Ncc

p
2

� � :

ð36Þ

Fig. 4(a) shows the effect of the number of collocation points on di-
mensionless distributions in the radiative–convective fin for three
values of convection–conduction parameters, namely, Ncc = 0.5, 1 and
5. In this case, the Peclet number is Pe=0, and the convective sink tem-
perature is Θc = 0.5. For the case of Ncc = 0.5, the integral averaged
relative errors between SCM results and analytical solutions are
2.32 × 10−4, 7.01 × 10−8 and 2.53 × 10−10 for N = 7, N = 11 and
N = 15, respectively. There are no significant differences between
SCM results with N = 15 and analytical solution.

Moreover, for the sake of quantitative analyzing the effect of the
total number of collocation points, the integral relative errors between



Fixed parameters:Fixed parameters:

Fig. 4. Effect of the number of collocation points on (a) dimensionless temperature distri-
bution, (b) integral averaged relative error.

Fixed parameters:Fixed parameters:

Fig. 6. Effect of A for dimensionless temperature distributions with different cross-
sections.
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SCM results and analytical solutions are given in Fig. 4(b). It can be seen
that the convergence rate of the SCM is very fast and approximately
follows an exponential law trend. As shown in Fig. 4(b), the integral
Fixed parameters:Fixed parameters:

Fig. 5. Effect of Pe for dimensionless temperature distributions with different cross-
sections.
relative error is less than 1.2195 × 10−9 for N = 15. The integral aver-
aged relative error does not obviously decrease when the total number
of collocation points is greater than N = 15. A similar trend is also dis-
covered for other parameters. Therefore, N = 15 is used for spatial
discretization in the following simulations.

3.3. Distribution of dimensionless temperature

Fig. 5 illustrates the effect of Peclet number on the distributions of di-
mensionless temperature along themoving radiative–convective fins of
trapezoidal, convex and concave parabolic cross-sections. It is evident
that the dimensionless temperature distribution generally increases
with the increasing of Peclet number. The Peclet number is the ratio of
thermal adventive transport rate to thermal diffusive transport rate in
themoving fin.When the Peclet number increases, the finmoves faster
and the exposure time to the surroundings gets shorter. Hence, the
dimensionless temperature becomes higher. Otherwise, Fig. 5 also
shows that the dimensionless temperature distribution is greatly de-
pendent on the shape of cross-section. The dimensionless temperature
gets higher for the convex fin, while the dimensionless temperature
gets lower for the concave parabolic fin.

Fig. 6 shows the dimensionless temperatures in trapezoidal, convex
and concave parabolic fins for different thermal conductivity parame-
ters, namely, A =−0.7, 0.0 and 0.7. For this case, the fixed parameters
Fixed parameters:Fixed parameters:

Fig. 7. Effect of B for dimensionless temperature distributions with different cross-
sections.
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Fig. 8. Effect of m for dimensionless temperature distributions with different cross-
sections.

Fixed parameters:Fixed parameters:

Fig. 10. Effect of Nrc for dimensionless temperature distributions with different cross-
sections.
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are B=0.5, C=0.4,m=2, Ncc = 1.0, Nrc= 1.0, Pe=1.0, Θc = 0.5 and
Θs = 0.5. It can be seen that the dimensionless temperature gradually
increases with the increasing of thermal conductivity coefficient. This
trend becomes more obvious in the fin tip. The reason can be explained
that forA=0.7, the thermal conductivity in thefin is proportional to the
dimensionless temperature, and conduction heat transfer in the fin is
enhanced. For A = −0.7, the phenomenon is just on the contrary.

In Fig. 7, effect of surface emissivity parameter B has been shown on
the dimensionless temperature distribution in the moving fin of com-
plex cross-section. It is seen from Fig. 7 that the dimensionless temper-
ature in the fin increases with increasing surface emissivity parameter.
As surface emissivity parameter increases from B = 0.1 to B = 0.5, the
average surface emissivity increases, and this leads to more radiative
heat loss from the fin surface. In addition, the effect of surface emissivity
parameter on the dimensionless temperature is maximum for the con-
cave parabolic fin; while it is minimum for the convex fin.

Fig. 8 shows the dimensionless temperature in the fin with constant
and variable heat transfer coefficients for assessing the effect of param-
eter of heat transfer coefficient m. The curves marked with m = 0
are corresponding to the temperature distribution with constant heat
transfer coefficient h = hL; while the curves marked with m = 2
imply the temperature distribution with nucleate boiling heat trans-

fer h ¼ hL T−Tc
TL−Tc

� �2
. Compared with constant heat transfer coefficient
Fixed parameters:Fixed parameters:

Fig. 9. Effect of Ncc for dimensionless temperature distributions with different cross-
sections.
(m = 0), variable heat transfer coefficient (m = 2) can produce the
higher dimensionless temperature. Because the average convective
heat transfer coefficient with m = 2 is less than heat transfer coeffi-
cient at the fin base temperature hL, then this will result in the reduc-
ing of convection heat loss. Otherwise, Fig. 7 also shows that the
effect of variable heat transfer coefficient on the dimensionless tem-
perature distribution is greatly dependent on the shape of cross-
section. The deviation of the dimensionless temperature for different
parameters of heat transfer coefficient increases from trapezoidal
cross-section to convex cross-section, then to concave parabolic
cross-section.

In Figs. 9 and 10, effects of convective–conductive parameterNcc and
radiative–conductive parameter Nrc on the dimensionless temperature
distribution have been given for A = 0.7, B = 0.5, C = 0.4, m = 2,
Pe = 1.0, Θc = 0.5 and Θs = 0.5. We can see from Figs. 9 and 10 that
for a constant Nrc, variable Ncc is imposing significant effect on the di-
mensionless temperature distribution, and for a given Ncc, Nrc is also
exerting a major effect on the dimensionless temperature distribution.
Ncc is defined to be the ratio of convection heat loss from the fin surface
to conduction heat transfer in thefin. Similarly,Nrc is defined as the ratio
of radiation heat loss from the fin surface to conduction heat transfer in
the fin. As the Ncc increases, it leads to more heat loss from the fin
surface. Hence, the dimensionless temperature distribution becomes
steeper from left to right. Fig. 10 also demonstrates that Nrc has a
Fixed parameters:Fixed parameters:

Fig. 11. Effect of Pe and Θc on the dimensionless fin tip temperature.
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Fig. 12. Effect of Ncc and A on the dimensionless fin tip temperature.

Fixed parameters:Fixed parameters:

Fig. 14. Effect of Pe on fin efficiency for different cross-sections.
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minimum effect on the dimensionless temperature for the trapezoidal
fin, while it shows a maximum effect for the concave parabolic fin. Fur-
thermore, comparing Figs. 9 and 10, one can see that Nrc imposes more
obvious effect on the dimensionless temperature distribution than Ncc

does.

3.4. Dimensionless fin-tip temperature

The dimensionless fin-tip temperature in themoving fin of complex
cross-section varying with the Peclet number under different convec-
tive sink temperature Θc = 0.2 and 0.5, is depicted in Fig. 11. The
other dimensionless parameters are A = 0.7, B = 0.5, C = 0.4, m = 2,
Ncc = 1.0, Nrc = 1.0, Θc = 0.4 and Θs = 0.5. As demonstrated in
Fig. 11, the dimensionless fin-tip temperature increases as the Peclet
number and convective sink temperature increase. Otherwise, the con-
vex fin gives higher dimensionless fin-tip temperature compared with
that of trapezoidal and concave parabolic fins.

In Fig. 12, we have analyzed the effect of convective–conductive
parameter and thermal conductivity parameter on the dimensionless
fin-tip temperatures for various cross-sections. The dimensionless
fin-tip temperature decreases with the increasing of the convective–
conductive parameter. The reason is that as convective–radiative
parameter increases, convective heat transfer along the moving fin
is stronger, and it attributes to more heat loss from the moving fin.
Fixed parameters:Fixed parameters:

Fig. 13. Effect of Nrc and m on the dimensionless fin tip temperature.
Moreover, as the thermal conductivity parameter increases for the
fixed convective–conductive parameter, the dimensionless fin-tip tem-
perature increases. The reason can be explained that conductive heat
transfer is enhanced as the dimensionless thermal conductivity coeffi-
cient of themoving fin increases, and results in the increasing of dimen-
sionless fin-tip temperature.

Similarly, the same variation trend of the dimensionless fin-tip tem-
perature, radiative–conductive parameter and the parameter of heat
transfer coefficient is drawn in Fig. 13. The increasing of the radiative–
conductive parameter means enhancement of radiative heat transfer.
It attributes to more heat loss from themoving fin by radiation, and de-
creases the dimensionless fin-tip temperature. Moreover, the average
convective heat transfer coefficient with m = 2 is less than constant
heat transfer coefficient with m = 0. It attributes to loss convective
heat loss from the fin of various cross-section, and results in the higher
dimensionless fin-tip temperature.

3.5. Fin efficiency

Fig. 14 presents the effect of the Peclet number on the fin efficiency
for trapezoidal, convex and concave parabolic fins. The fin efficiency in-
creases as the Peclet number increases. The reason is that, as the Peclet
number increases, the speed of the moving fin becomes faster and the
exposure time to the surroundings gets shorter. The dimensionless
Fixed parameters:Fixed parameters:

Fig. 15. Effect of Pe on volume adjusted fin efficiency for different cross-sections.
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Fig. 16. Effect of A on volume adjusted fin efficiency for different cross-sections.

Fixed parameters:Fixed parameters:

Fig. 18. Effect of Nrc on volume adjusted fin efficiency for different cross-sections.
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temperature becomes higher, and results in an increase in the fin effi-
ciency. Compared with the efficiencies of trapezoidal and concave para-
bolic fins, the efficiency of the convex fin is higher. However, this
comparison is improper, because it does not take into account thediffer-
ence in the amount of material for these fins. As shown in Fig. 1, for the
same thickness and length, the convexfin consumesmorematerial than
the trapezoidal and concave parabolic fins. The volume adjusted fin ef-
ficiency is obtained by Eq. (15). Effects of the Peclet number, the thermal
conductivity parameter and convective–conductive parameter on the
volume adjusted fin efficiency are shown in Figs. 15–18, respectively.
In Figs. 15–18, the volume adjusted fin efficiencies of trapezoidal and
concave parabolic fins are higher than those of the convex fin.

As shown in Fig. 16, the increasing of thermal conductivity parame-
ter can increase the volume adjusted fin efficiency. The increasing of co-
efficient of thermal conductivity can enhance conduction heat transfer
and increase the dimensionless temperature, and consequently the vol-
ume adjusted fin efficiency increases.

Figs. 17 and 18 show effects of convective–conductive parameter
and radiative–conductive parameter on the volume adjusted fin effi-
ciency, respectively. As convective–conductive parameter or radiative–
conductive parameter increases, it attributes to more convective or
radiative heat loss from the fin surface, and results in a decrease in
the fin efficiency. Moreover, compared with the decreasing trend in
Fig. 17, this trend in Fig. 18 ismore obvious. The reason is clear, radiation
heat loss plays more obvious impact on the fin efficiency, and radiation
Fixed parameters:Fixed parameters:

Fig. 17. Effect of Ncc on volume adjusted fin efficiency for different cross-sections.
heat loss is proportional to the fourth power of temperature difference
between radiation sink temperature and surface temperature.

4 . Conclusions

In this paper, SCM is successfully applied to analyze the thermal per-
formances of moving radiative–convective fins of trapezoidal, convex
and concave parabolic cross-sections with temperature-dependent
thermal conductivity, heat transfer coefficient and surface emissivity.
During the solving process, energy equation is expressed as non-
dimensional form by dimensionless parameters, the spatial domain of
dimensionless temperature is discretized by Lagrange interpolation
polynomials, and a particular algorithm is adopted to reduce multiple
nonlinearities of energy equation. Effects of physical parameters such
as Peclet number, thermal conductivity parameter, emissivity parame-
ter, parameter of heat transfer coefficient, convective–conductive
parameter and radiative–conductive parameter on dimensionless tem-
perature, dimensionless fin-tip temperature and fin efficiency are com-
prehensively investigated. Conclusions can be summarized as follows:

● Comparedwith available results in references, SCMhas a good accu-
racy for solving heat transfer in the moving fin of complex cross-
section with multiple nonlinearities.

● The integral relative error between SCM results and analytical
solutions approximately decreases with the exponential trend as
the total number of collocation points increases.

● Taking into account the difference in the amount ofmaterial for trap-
ezoidal, convex and concave parabolic fins, a volume adjusted fin
efficiency is introduced to compare the thermal performances of
these fins.
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