
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Tsinghua University]
On: 27 July 2010
Access details: Access Details: [subscription number 912295224]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Heat Transfer Engineering
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713723051

A Nonlinear Solution of Inverse Heat Conduction Problem for Obtaining
the Inner Heat Transfer Coefficient
Jinliang Xua; Tingkuan Chenb

a Institute of Nuclear Energy Technology, Tsinghua University, Beijing, People's Republic of China b

National Laboratory on Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xian,
People's Republic of China

To cite this Article Xu, Jinliang and Chen, Tingkuan(1998) 'A Nonlinear Solution of Inverse Heat Conduction Problem for
Obtaining the Inner Heat Transfer Coefficient', Heat Transfer Engineering, 19: 2, 45 — 53
To link to this Article: DOI: 10.1080/01457639808939920
URL: http://dx.doi.org/10.1080/01457639808939920

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713723051
http://dx.doi.org/10.1080/01457639808939920
http://www.informaworld.com/terms-and-conditions-of-access.pdf


A Nonlinear Solutio.1 of
Inverse Heat Conduction
Problem for Obtaining the
lnner Heat Transfer
Coefficient

JINLIANG xu
Institute of Nuclear Energy Technology, Tsinghua University, Beijing, People's Republic of China

TINGKUAN CHEN

National Laboratory on Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xian,
People's Republic of China

When steam-water two-phase mixtures flow in inclined or horizontal tubes that are heated by
alternating current, the circular angle-dependent temperatures on the outer radius imply that the inner
heat transfer coefficients also vary with circular angle. The inner heat transfer coefficients are difficult to
measure directly, but may be determined with the aid of inverse heat conduction theory. The direct
model calculates the temperature field inside a half-pipe. This is subjected to a given heat transfer
coefficient angular profile on its inner radius. The inverse heat conduction model calculates the
temperature field under the conditions of the measured discrete temperatures and the heat-insulated
boundary on the outer radius. Variation of the cylinder heat conductivity and specific resistance versus
temperatures are considered in both models. The prediction accuracy is analyzed with a numerical test.
The inverse heat conduction problem solution is verified as a useful tool for obtaining the inner heat
transfer coefficient.

Measuring the local heat transfer coefficient h
by the direct method between a point M on a wall
and a fluid at temperature TJ poses a difficult
problem: One has to measure at the same spot
both a wall temperature T and a heat flux Q,
which passes through a section of area t:.S cen
tered at M as shown in Figure 1.

When two-phase mixture flows in a vertical
tube that is uniformly heated by electrical resis
tance or boiler flame, the inner heat transfer

Received t3 September 1996; accepted 8 July 1997.
Address correspondence to Dr. Jinliang Xu, Institute of Nuclear

Energy Technology, Tsinghua University, Beijing, 100084, People's
Republic of China. E-mail: xsr.ine@mail.tsinghua.edu.cn

heat transler engineering

coefficients can be easily obtained by measuring
the uniform heat flux and wall temperature on the
outer tube surface. (The temperature on the inner
tube wall surface can be easily predicted by the
one-dimensional heat conduction equation.) How
ever, it is difficult to do this for two-phase mix
tures flowing in inclined or horizontal tubes, The
natural convection at the cross section may affect
the inner heat transfer coefficient distribution
along circular angles. From our experiments per
formed in the high-pressure convective test loop
of Xi'an Jiaotong University, we know that at
certain conditions, the temperature at the top
point on the outer radius begins to rise, while the
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Figure I Direct measurement of local heat transfer coeffi
cient.

temperatures at lower points keep the normal
values, from these we infer that heat transfer
deterioration occurs in the region neighboring the
top point. In order to obtain insight into the
nonuniform heat transfer coefficient distribution,
the two-dimensional wall temperature field should
be solved with the aid of inverse heat conduction
theory.

One inverse problem in heat conduction theory
consists of-estimating the temperature and flux on
the surface of a conduction solid from tempera
ture measurements made within or at a secondary
surface of the solid [1]. This problem is encoun
tered frequently in situations where it is impossi
ble to monitor the desired quantities directly. Typ
ical examples are the estimation of surface heat
transfer from measurements made within the skin
of a reentry vehicle, and the prediction of temper
ature and heat flux from calorimeter-type instru
mentation. Many researchers have examined the
inverse problem, and a number of approaches
have been offered. A great many of investigations
concerned the one-dimensional transient or
steady-state problem. Hills and Hensel [2] consid
ered the one-dimensional nonlinear problem of
heat conduction using a noniterative space-march
ing finite-difference algorithm. Flach and Ozisik
[3] presented an adaptive sequential method to
solve the inverse heat conduction problem. Kurpisz
[4], and Maillet and Degiovanni [5], are authors
who contributed to the multidimensional inverse
heat conduction problem. Maillet and Degiovanni
[5] used an analytical or a boundary-element tech
nique to treat the steady-state two-dimensional
problem. Recently, Keanini and Desai [6] devel
oped an inverse finite-element method for predict
ing multidimensional phase-change boundaries
and nonlinear solid-phase heat transfer.

The direct model is first applied, using the
finite-difference numerical solution. Then the

nonlinear inverse heat conduction problem is
solved when the outer wall surface is well insu
lated, and the discrete temperatures on the outer
radius are obtained. A numerical test is per
formed to discuss the test error of temperatures
on the inner heat transfer coefficient; example
results are also provided using real experimental
data from the test facility of the authors' labora
tory.

DIRECT HEAT CONDUCTION PROBLEM
SOLUTION (DHCS)

In the boiling two-phase heat transfer experi
ment, the electrical resistance is usually used to
heat the mixture inside the tube directly. As shown
in Figure 2, across the distance L, with inner
diameter D i , the voltage applied in the tube is V,
the current is I. If we ignore the heat release from
the outer surface, the average heat flux on the
inner radius is q = VIj(7TDiL). In order to per
form the numerical test on the temperature error
on the inner heat transfer coefficient in the in
verse heat conduction problem, we start the pro
cess of direct heat conduction problem solution.
At cross section A (Figure 2), one-half of the tube
geometry is considered due to the geometry sym
metry. In the present study, the control-volume
heat balance method and homogeneous grids are
used; the control-volume method and the diffusive
problem solution are classical and can be found
in [7].

The outer surface is assumed to be well heat
insulated, the inner surface is assumed to acquire
a known heat transfer coefficient distribution. The
thermal conductivity K and specific electrical re
sistance p should be considered as functions of
local temperature.

The steady-state heat conduction equation can
be written as

~ !..(rK aT) + ~ !..(K aT) + S = 0 (1)
r ar ar r ae r ao

where S is the heat source term. For internal
nodes, the relationship between TU, J) and the
four neighboring node temperatures can be ob
tained by integrating Eq. (1) in control volume
P( I, J); see Figure 3.

apTp = aETE + awTw + aNTN + asTs + bU, J)

(2)
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f--------1 Vf-------1

tube wall
T(1,1)

rv -----'
AC power

Figure 2

W,NI

SECTION A-A

Inclined tube arrangement.

Figure 3 Two-dimensional grid system.

where

In Eq. (2), bi I, J) represents the heat produced
in control volume PU, J) per unit length; it will
be specified in detail in a later section. Equation
(2) is correct for the internal nodes, that is, 2 ~

I ~ M - 1, 2 ~ J s N - 1.

BOUNDARY CONDITIONS

As shown in Figure 2, surface A is heat insu
lated; surface B and surface C are also heat
insulated due to the geometry symmetry.

Based on the method of control-volume heat
balance, the discrete temperatures [TO, J), 2 ~

J ~ N - 1] on surface A can be written as

!:J.r

where

+ asT( 2, J) + b(l, 1) (3)

rs !:J. (J
a =

s (8r)s/Ks

b = S!:J.V

In the present study, (8fJ)e=(8fJ)w=!:J.(J,(8r)n =

(8r), = Sr, a p = a E + aw + aN + as, where !:J.V
is the volume of PU, J).
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Similar temperature expressions for T(M,1)
and T(M, N) can be obtained as follows:

For T(1, 1) and TO, N), we have

(a E + as)T(I, 1)

= aET(l, 2) + asT(2, 1) + b(1, 1)

r, 6. ()
a =---

s 26.r/Ks

(4) (a p + O.5h(1)rj M)T(M, 1)

= aET(M, 2) + aNT(M - 1,1)

+ b(M, 1) + 0.5h(l)rj 6.()Tf (9)

(a w + as)T(l, N)

= awT(1, N - 1) + asT(2, N) + b(1, N)
where

r, 6. ()
a =---

s 26.r/Ks

(5)
(rj + 0.5 M) 6.()

2M/Kn

On surfaces Band C, we have

(aE + as + aN)T(J, 1)

= aET(J, 2) + aNT(J - 1,1)

+ asT(! + 1,1) + bt L, 1)

(a w + as + aN)T(J, N)

= awT(J, N - 1) + aNT(J - 1, N)

+ asT(J + 1, N) + bt I , N)

(6)

(7)

(a p + 0.5h(N)rj M)T(M, N)

= awT(M, N - 1) + aNT(M - 1, N)

+ b(M, N) + O.5h(N)rMTf (10)

where

(r j + 0.5 6.r) 6.()

2M/Kn

Equations (6) and (7) are correct when 2 s I s
M - 1; the coefficients a E , aN' as, aw can be
obtained using the method of Eq. (3) and were not
written here.

If we apply the control-volume heat balance
method to the control volume adjacent to the
surface D, we obtain the following temperature
equations on surface D.

NONLINEAR HEAT SOURCE TREATMENT

So far, the algorithm expressions for T(I, J)
(l s I ::'> M), 1 ::'> J ::'> N) have been obtained. Af
ter the nonlinear heat source term is determined,
the above equations can be easily solved itera
tively.

As sketched in Figure 2, we divide the half-tube
into M X N grids. The total heat produced by the
half tube per unit length is

(11)Q = Q7T'j

(8)

[a p + hi I tr, 6.0]T(M,])

=awT(M,J-]) +aET(M,J+ 1)

+ aNT(M - 1,]) + b(M,])

+ h(J)rj 6.()Tf

where

On the other hand, the M X N parallel electri
cal resistances per unit length are assumed to
operate at the same voltage V*. The total heat
produced by the M X N resistances is

M
a E = -:----:--:-z-, 6.0/Kc

(r j , 0.5 6.r) 6.0

s-/«;

6.r

(2::,> J::,> N - 1)

V*2
Q=

R·t
(12)
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is the electrical resistance of PU, F), and R, is
the total resistance of the M X N grids.

The heat created by control volume P(I, J) per
unit length is

where

(

M N 1 )-1
R = I: I: ----,------,--

, J~ I J~ 1 RU, n

V*2

bU, n = RU, J)

RU, n

(13)

For internal control volume P(I, n, Eq. (2) is
used to obtain the following temperatures:

rci « l,n = [apTU,n -aETU,J+ 1)

-awTU, J - 1) - aNT(I - 1, n

-bU, J)]/a s (16)

Equation (16) is correct for 2 :s; 1 :s; M - 1 and
2:s;J:s;N-1.

When 1 is equal to M - 1, we acquire the
temperature expressions at the inner wall surface.

(14)

Combining Eqs. (1 I), (12), and (13), we obtain

R, _
bU, n = R(I, n q7T1i

where R(I, J) = p(l, J)jA(l, J); p(I, J) and
A( I, J) are the specific resistance and the cross
sectional area of control volume P( I, J). For the
stainless steel used in the present experiment,
p = 7.74 X 10- 7 (1 + 7.45 X 1O-4 T) n m, K =

14.3(1 + 0.001T) W j(m °C).

INVERSE HEAT CONDUCTION PROBLEM
SOLUTION (IHCS)

The inverse heat conduction problem is con
cerned mainly with the unknown boundary condi
tion on the inner wall surface. This is subjected to
a well-heat-insulated boundary condition at the
outer radius. The discrete temperatures on the
outer radius are assumed to be true values from
measurements; the measurement error on the in
ner heat transfer coefficient is described in the
next section.

In this problem, the number of unknown tem
peratures is (M - 1) X N because T(1, J) is
known. Thus it is necessary to find (M - 1) X N
temperature solutions.

The heat-insulated boundary condition at sur
face A is used to obtain the temperature expres
sions for the second-layer nodes in the radial
direction. This can be done by rewriting Eq. (3)
into the following form:

T(2, n = [(aE + aw + as)T(1, n

-a ET(1, J + I) - awT(1, J - 1)

-b(1, n]/as (15)

T(2,1) = [(aE + as)T(1, 1) - aET(1, 2)

-b(1,1)]/as (17)

T(2, N) = [Caw + as)T(], N) - awT(1, N - 1)

-b(1, N)l!a s (18)

TU + 1,1) = [(aE + aN + as)TU, 1)

-aETU,2) - aNTU - 1,1)

-bU,I)]/as (19)

Ti I + 1, N) = [Caw + aN + as)TU, N)

-awTU, N - 1) - aNTU - 1, N)

-bU, N)]/a s (20)

All temperature coefficients a E , aw, aN' as,
and bi I, I), are calculated based on the method
described for the direct heat conduction problem
solution. Equations (15)-(20) constitute (M -1) X

N unknown temperatures. These unknown vari
ables can also be solved by the iterative method.
After the temperature field is obtained, the local
heat transfer coefficient and heat flux on the
inner radius can be predicted.

For direct heat conduction problem solution
(DHCS), the following iterative procedure is ap
plied:

1. Specify the problem, including specifying tube
dimensions, average heat flux, grid division,
and a given inner heat transfer coefficient dis
tribution.

2. Assume an initial tube temperature field.
3. Solve the algorithm equations T(I, J), 1 :s; 1 :s;

M, 1 :s; J s N. The iterative procedure is con-
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tinued until I[T(J, 1) - T*(J, 1)]jT(J, 1)1 < E;
E is set to be 10- 6 in the present study.

For inverse heat conduction problem solution
(IHCS), the iterative procedure is updated to the
following:

1. Specify the problem, including specifying tube
dimensions, average heat flux, grid division,
and a given temperature distribution at the
outer surface T(1,1).

2. Assume an initial tube temperature field ex
cept for T(l, J).

3. Solve the algorithm equations T(J,1), 2:::;
I :::; M, 1:::; J :::; N. The iterative procedure
is con tin u e dun til I[T (I, J) -
T*(I, 1)]jT(I, 1)1 < E.

The heat transfer coefficients at the inner sur
face can be obtained from Eqs. (8)-(10); for in
stance, h(J)(2 s J s N - 1) is

awT(M, J - 1) + aETCM, J + 1) + aNT(M - 1, J) - apT(M, J) + bt M, 1)
h(J) = ---'-'-------=---------,-----,---'--------,--------"-------

r. M(TCM, J) - Tf )
(21)

RESULTS AND DISCUSSION

Based on the methods introduced above, both a
direct heat conduction problem code and an in
verse heat conduction problem code arc con
structed. In order to verify the effectiveness of the
inverse heat conduction solution, we did the com
parative calculations using both codes for ro =

12.5 mm, rj = 10.5 mm, Tf = 320.0°C, M = 20,
and N = 10. The grid numbers used were 20 X 10
with no obvious change in accuracy for the further
increase of grid numbers.

Based on the experimental observations, just
before the critical heat flux occurs, the tempera
ture in the upper part of the tube may be much
higher than that in the lower part of the tube,
which induces the lower inner heat transfer coeffi
cients in the upper part of the tube. In DHCS
calculations, we assume a heat transfer coefficient
distribution of h(O) = 2,000 + 54,000(Oj7T)2 
36,000(Oj7T)3. With the above heat transfer coef
ficients, we obtained a lower heat transfer coeffi
cient at top point hl ll _ o = 2,000 W jm2 °C) and a
higher heat transfer coefficient at bottom point
hl ll _ " = 20,000 Wjm 2 °C). The above heat trans
fer coefficient distribution is also even and contin
uous at 0 = 0 and 0 = 7T. The average inner heat
flux is q = 200 kW jm2• At this condition, we
obtained the temperature field using the DHCS
solution: The discrete temperatures at the outer
surface arc predicted to be 401.74, 393.87, 377044,
362.62, 352.83, 347.08, 343.76, 341.86, 340.84, and
34051°C. The discrete temperatures on the outer
radius obtained in DHCS solution arc simulated
as the true measured temperatures with zero mean
temperature error, and treated as the input data

50 heat transfer engineering

in IHCS solution. With nonzero mean error, we
added a normally distributed random error to
each discrete temperature as 0.5, -0.3, 0.1, 004,
- 004, 0.3, 0.5, - 004, 0.2, and - OSc. The IHCS
solution acquired the inner heat transfer coeffi
cients with zero mean error and nonzero mean
error, and the heat transfer coefficients were com
pared with the assumed values in DHCS solution.
The comparisons arc shown in Table 1.

From Table 1, we know that the present inverse
heat conduction solution is a useful tool in esti
mating the inner heat transfer coefficient. The
comparisons between DHCS and IHCS solution
with zero mean error show that the maximum
relative error is only 0.95%. Generally speaking,
larger error of estimated heat transfer coefficient
may appear at 0 = 0 and 0 = 7T. The predicted
temperature field by DHCS is very close to that by
IHCS: We cannot even discern the differences
between them. The predicted local heat flux is
also very close to that by IHCS solution, and we
found that q(1)r j t1 0j2 + q(lO)r j t1 0j2 +
L~_2 q(J)rj t10 is very close to q7Trj , confirming
the energy balance principle.

It should be noted that any temperature mea
surement includes errors. This leads us to perform
sensitivity analysis of the temperature measure
ment error on the inner heat transfer coefficient.
With nonzero mean error, the assumed maximum
temperature error is 0.5°C and the maximum esti
mated heat transfer coefficient error is 8.0%. The
estimated heat transfer coefficient errors decrease
with decreasing temperature error at the outer
radius, and also decrease with increasing tempera
ture difference between the inside wall and the
fluid. This is very useful in two-phase heat trans-
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Table 1 Comparisons of heat transfer coefficients with zero and nonzero mean error

a
h (W/m2,C) 0 Tr/9 2Tr/9 3Tr/9 4Tr/9 5Tr/9 6Tr/9 7Tr/9 8Tr/9 Tr

DHCS solution 2,000 2,617 4,272 6,667 9,506 12,494 15,333 17,728 19,383 20,000
IHCS solution" 2,014 2,639 4,288 6,677 9,511 12,499 15,345 17,743 19,393 20,019
IHCS solution" 1,936 2,717 4,271 6,461 9,990 12,140 14,396 19,152 18,345 21,022
relative error %" 0.70 0.84 0.37 0.15 0.05 0.04 0.08 0.08 0.05 0.95
relative error %b -3.20 5.00 -0.02 -3.10 5.10 -2.83 -6.10 8.00 -5.40 -5.11

"Zero mean error.
bNonzero mean error.
The relative error is calculated as (h IHCS solution - hOHCS)/hoHCS'

Figure 4 Heat transfer coefficients at IJ = 0 versus fluid
enthalpy.

(J = 0 are predicted using the present IHCS solu
tion with the measured temperatures at the outer
wall surface. The heat transfer coefficients attain
maximum values just before the fluid reaches the
pseudocritical temperature, then decrease sharply
in the near-pseudocritical region (at the pseudo
critical point, the specific capacity attains a maxi
mum value). Such a phenomenon is similar to that
with supercritical-pressure water flowing in verti
cal tubes, but the present experiment found that
the heat transfer coefficients at (J = aare nearly
one-half of the heat transfer coefficients with su
percritical-pressure water flowing in vertical tubes.
Another example of wall temperatures, inner heat
transfer coefficients versus circular angles, is
shown in Figure 5 (post-pseudocritical region).
Nonuniform heat transfer characteristics versus
circular angles are detected in the near- or post
pseudocritical region even with high mass velocity
flowing in the inclined tube.

The IHCS solution can be easily extended to
some practical heat exchangers. However, the
practical heat exchanger does not contain a heat-

vol. 19 no. 2 1998 51

fer experiment data analysis, especially in the crit
ical heat flux region or the post-dryout region.
Under such conditions, relatively larger tempera
ture measurement errors at the outer radius pro
duce only a little error on the inner heat transfer
coefficient, due to the large temperature differ
ence between the inside wall and the fluid.

Generally, the one-dimensional inverse heat
conduction method requires fewer thermocouples
to measure the temperature. However, for the
present two-dimensional heat conduction prob
lem, many locations are needed to obtain the
temperatures at the outer surface due to the cir
cular angle-dependent inner heat transfer coeffi
cient. This can be easily done by welding the
thermocouples on the outer surface.

Due to the need to develop a new, supercriti
cal-pressure, once-through boiler in China, experi
ments with water at supercritical pressure flowing
in inclined tubes were performed recently. The
test tube, with dimensions of <1>32 X 3 mrn, was
arranged at an inclined angle a of 14° or 10°. At a
given cross section, seven thermocouples were
welded at the outer surface of one half-tube. The
maximum temperature error was estimated to be
a.5°c. The tube outer surface was also well heat
insulated. With supercritical water flowing in in
clined tubes, heat transfer shows special charac
teristics due to the complicated physical proper
ties. A small change of fluid temperature can lead
to large changes in heat transfer, especially in the
near-pseudocritical region and the post-pseudo
critical region. The heat transfer coefficient is
lowest at (J = 0 and highest at (J = 7T, but the
difference is small when the fluid temperature is
much less than the pseudocritical temperature
and it becomes larger in the near-pseudocritical
and post-pseudocritical regions. For practical de
sign interest, one wishes to know the heat transfer
coefficient at (J = O. Typical examples are shown
in Figure 4. The inner heat transfer coefficients at
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680,---------------,

CONCLUSIONS

NOMENCLATURE

a E, a w, aN' as temperature coefficients of east,
west, north, and south surfaces,
respectively

A cross-sectional area of the control
volume, m2

b heat produced by control volume
per unit length, W jm

D, inside diameter of the tube, m
G mass flow velocity, kgjm2 s
h heat transfer coefficient,

Wjm2 0C

fluid enthalpy, Jjkg
i c fluid enthalpy at pseudocritical

temperature, J jkg
I current flowing through the tube,

A
K thermal conductivity, Wjm °C
L length of the tube, m
M total grid point in the r direction
N total grid point in the (J direction
P pressure, Pa or MPa
q average heat flux, W jm2

vol. 19 no. 2 1998

temperature field. This is subjected to a given
heat transfer coefficient angular profile on its
inner radius and a well heat-insulated outer sur
face. The heat conductivity K and material spe
cific resistance are considered as functions of tem
peratures. The' nonlinear heat source term is
considered by the concept of parallel electrical
resistance heating. A nonlinear inverse heat con
duction solution has also been constructed under
the condition of well heat-insulated outer surface
and the temperature measurement on the outer
surface.

Comparative calculations were performed by
both DHCS solution and IHCS solution with zero
mean error and nonzero mean error. With in
creasing temperature difference between the in
ner wall surface and the fluid, the sensitivity of
the noisy temperature measurement on the inner
heat transfer coefficient is decreased.

The sensitivity of the noisy temperature mea
surement on the inner heat transfer coefficient is
dependent on the thermocouples. Smaller-diame
ter thermocouple may produce small noisy error,
thus higher accuracy of heat transfer coefficient
may be obtained.

The advantage of the approach is that the solu
tion is simple and needs little time to perform
calculations.
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A steady-state, two-dimensional heat conduc
tion model has been developed to calculate the

600
0 30 60 90 120 150 180

8, 0

1300

P(MPa) G(kglm2s) q(kW/m2)
1200 25 800 250

o T.=403 -c a= 10°0 1100
"I:
~ 1000
~

900

800
0 30 60 90 120 150 180

.8,0

~'igure 5 Temperature and heat transfer coefficients versus
circular angle.

insulated boundary condition at thc outer wall
surface. An example is the heat exchanger used in
chemical engineering. Such a heat exchanger uses
high-temperature gas to heat the fluid from sin
gle-phase liquid to two-phase mixture with fluid
flowing in horizontal tubes. The high-temperature
gas may be stagnant or flowing, and the nonuni
formly inner heat transfer coefficient at the cross
section is due mainly to the two-phase mixture
stratification. Usually the heat flux created by gas
at the outer wall surface is uniform and can be
given by the energy balance method, or the heat
transfer coefficient at the outer wall surface can
be estimated by some empirical correlations found
in somc classical literature. The control-volume
energy equations adjacent to the outer wall sur
face should consider such heat flux. The wall
temperatures at the outer wall surface should also
be measured by thermocouples. In addition, the
heat source tcrm bi I, J) in the IHCS solution is
zero.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
s
i
n
g
h
u
a
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
1
:
3
4
 
2
7
 
J
u
l
y
 
2
0
1
0



r.
ro
r, e
R

R,

S

T
T*

Ig1

~~

Q heat created by electrical resis-
tance per unit length, W1m
tube inside diameter, m
tube outside diameter, m
coordinates, Figure 2
electrical resistance per unit
length, Dim
total electrical resistance of one
half-tube per unit length, Dim
heat source term per volume,
W/m3

temperature, °C
last iterative temperature value,
°C

Tf fluid temperature, °C
V voltage applied in the tube across

a given tube distance, V
V* voltage per unit length, V
a inclined angle with respect to hor-

izontal direction, rad or deg
Sr, MJ, 8r, 8(J defined in Figure 2
€ control variable
p specific electrical resistance, D m
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